• Title/Summary/Keyword: 선량 감소

Search Result 1,219, Processing Time 0.029 seconds

A Study of Thermoplastic Masks Deformation for Reducing Scattered Ray in Radiation Therapy (방사선치료용 열가소성 플라스틱 마스크의 산란선 감소를 위한 마스크 변형에 관한 연구)

  • Seong-Min, Lee;Jun-Young, Lee;Jae-Hyun, Kim;Kyeong-Hwan, Jeong;Jeong-Min, Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • In head and neck radiation therapy, the thermoplastic immobilization mask used for fixing the patient's posture and reproducibility causes scattered rays by being in close contact with the skin. To investigate the increase in skin dose due to the scattered rays generated from the immobilization mask, we evaluated dose reduction by decreasing contact between face skin and immobilization mask in computerized radiotherapy planning system with CT scanned images. In addition, to confirm the reproducibility problem of the setup due to the decrease in the cover area of immobilizing, the difference of each setup was confirmed using DRR and CT images. As the mask area covered for immobilizing was reduced, the dose on the skin surface significantly decreased, and it was confirmed that there was no significant difference in reproducibility even if the entire face was not covered and fixed.

Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy (세기조절방사선치료에서 선량율 변화에 따른 선량분포 특성)

  • Kang, Min-Kyu;Kim, Sung-Joon;Shin, Hyun-Soo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - $0^{\circ}$, $72^{\circ}$, $144^{\circ}$, $216^{\circ}$, $288^{\circ}$ - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.

Calculation Method of Entrance Skin Dose in X-ray Beam Quality Factor (선질계수에 의한 피부입사선량 계산법)

  • Kim, Sung-Chul;Kim, Chong-Yeal;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.258-267
    • /
    • 2010
  • This interest in radiation exposure makes increasing doctor's awareness and knowledge of radiation dose in patients during X-ray test important in reducing patient's uneasiness. However, very few facilities are equipped with measurement instruments. Therefore, an intensive study to find out patient dose using computational method has been initiated. This study used special features of the bit system and NDD-M and directly measured the output dose of diagnostic X-ray instruments used in Korea to create tables. Two different methods were found to be adequate when applied to cases when X-ray outputs were both known and unknown, and comparative experiments with real measurement doses were carried out. Presented methods were found to provide more accurate results compared to the bit system and NDD-M. Therefore, patient dose during clinical trials were found to be more easily acceptable to medical personnel in the radiation field in terms of radiation exposure and reduction of medical X ray dose.

Dose Assessment during Pregnancy in Abdominal X-ray Examinations (복부 진단 X선 검사 시 태아 및 임산부의 선량 평가)

  • Woo, Ri-Won;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.261-270
    • /
    • 2020
  • In diagnostic X-ray examinations, dose assessments for pregnant female and fetus are realistically difficult, and related research is also lacking. Therefore, in this study, the purpose of the simulation was to analyze the dose and fetal dose for pregnant female during abdominal X-ray examination. Based on the data presented in ICRP 89, this study produced phantom reconstructed of the existing prenatal phantom, which was used to analyze the evaluation of the organ dose and fetal dose of pregnant female according to pregnancy week and the difference between the dose of the existing phantom and the reconstructed phantom. As a result, the abdominal X-ray test showed a tendency to show higher doses for organs close to the direction of the source joining. In addition, it was confirmed that fetal doses in posteroanterior position were reduced by more than 65% compared with anteroposterior position.

Evaluation of Treatment Planning for Head Tilting in WBRT 3D-CRT by TomoDirect mode: a Phantom Study (토모다이렉트를 이용한 3차원 전뇌 방사선치료에서 두상 각도에 따른 치료계획평가: 팬톰 실험)

  • Dae-Gun, Kim;Sang-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.857-862
    • /
    • 2022
  • The purpose of this study was to evaluate a three-dimensional conformal radiotherapy (3D-CRT) treatment plan with regard to head tilting in whole-brain radiotherapy (WBRT) using TomoDirect (TD) mode in Tomotherapy. WBRT 3D-CRT by TD was compared for a total of five head tilt angles (-20°, -10°, 0°. +10° and +20°). The dose homogeneity index (HI) and prescription dose index (CI) were calculated to confirm the target coverage. The maximum and average doses for critical organs such as the lens, eyeball and parotid glands were calculated for different angles of head tilting. The HI and CI were closet to the result value of 1 at the head tilted angle +10° and +20°. At a head tilted angle of +10°, the dose to the lens and eyeballs decreased by about 74% and about 30%, when compared with the reference angle (0°), respectively. The results of this study suggest that a head angle of +10 with chin-up would save adequate target coverage and reduce exposure dose to the lens.

Impact of Respiratory Motion on Breast Cancer Intensity-modulated Radiation Therapy (유방암 세기조절방사선치료에서의 호흡운동 영향)

  • Chung, Weon Kuu;Chung, Mijoo;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.93-97
    • /
    • 2016
  • In this study, we evaluate the effect of respiration on the dose distribution in patient target volume (PTV) during intensity-modulated radiation therapy (IMRT) and research methods to reduce this impact. The dose distributions, homogeneity index (HI), coverage index (CVI), and conformity index of the PTV, which is calculated from the dose-volume histogram (DVH), are compared between the maximum intensity projection (MIP) image-based plan and other images at respiration phases of 30%, 60% and 90%. In addition, the reducing effect of complication caused by patient respiration is estimated in the case of a bolus and the expended PTV on the skin. The HI is increased by approximately twice, and the CVI is relatively decreased without the bolus at other respiration phases. With the bolus and expended PTV, the change in the dose distribution of the PTV is relatively small with patient respiration. Therefore, the usage of the bolus and expended PTV can be considered as one of the methods to improve the accuracy of IMRT in the treatment of breast cancer patients with respiratory motion.

Analysis on the Entrance Surface Dose and Contrast Medium Dose at Computed Tomography and Angiography in Cardiovascular Examination (심장혈관검사에서 전산화단층검사와 혈관조영검사의 입사표면선량 및 조영제 사용량에 관한 분석)

  • Seo, Young-Hyun;Han, Jae-Bok;Choi, Nam-Gil;Song, Jong-Nam
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.535-541
    • /
    • 2016
  • This study aimed to identify dose reduction measures by retrospectively analyzing the entrance surface dose at computed tomography and angiography in cardiovascular examination and to contribute the patients with renal impairmend and a high probability of side effects to determine the inspection's direction by measuring the contrast usages actually to active actions for the dose by actually measuring the contrast medium dose. The CTDIvol value and air kerma value, which are the entrance surface doses of the two examinations, and the contrast medium dose depending on the number of slides were compared and analyzed. This study was conducted in 21 subjects (11 males; 10 females) who underwent Cardiac Computed Tomographic Angiography (CCTA) and Coronary Angiography (CAG) in this hospital during the period from May 2014 to May 2016. The subject's age was 48~85 years old (mean $65{\pm}10$ years old), and the weight was 37.6~83.3 kg (mean $63{\pm}6kg$). Dose reduction could be expected in the cardiovascular examination using CCTA rather than in the examination using CAG. In terms of contrast medium dose, CAG used a smaller dose than CCTA. In particular, as the number of slides increases at CAG, the contrast medium dose increases. Therefore, in order to reduce the contrast medium dose, the number of slides suitable for the scan range must be selected.

Effectiveness Assessment on Jaw-Tracking in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Esophageal Cancer (식도암 세기조절방사선치료와 용적세기조절회전치료에 대한 Jaw-Tracking의 유용성 평가)

  • Oh, Hyeon Taek;Yoo, Soon Mi;Jeon, Soo Dong;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Purpose : To evaluate the effectiveness of Jaw-tracking(JT) technique in Intensity-modulated radiation therapy(IMRT) and Volumetric-modulated arc therapy(VMAT) for radiation therapy of esophageal cancer by analyzing volume dose of perimetrical normal organs along with the low-dose volume regions. Materials and Method: A total of 27 patients were selected who received radiation therapy for esophageal cancer with using $VitalBeam^{TM}$(Varian Medical System, U.S.A) in our hospital. Using Eclipse system(Ver. 13.6 Varian, U.S.A), radiation treatment planning was set up with Jaw-tracking technique(JT) and Non-Jaw-tracking technique(NJT), and was conducted for the patients with T-shaped Planning target volume(PTV), including Supraclavicular lymph nodes(SCL). PTV was classified into whether celiac area was included or not to identify the influence on the radiation field. To compare the treatment plans, Organ at risk(OAR) was defined to bilateral lung, heart, and spinal cord and evaluated for Conformity index(CI) and Homogeneity index(HI). Portal dosimetry was performed to verify a clinical application using Electronic portal imaging device(EPID) and Gamma analysis was performed with establishing thresholds of radiation field as a parameter, with various range of 0 %, 5 %, and 10 %. Results: All treatment plans were established on gamma pass rates of 95 % with 3 mm/3 % criteria. For a threshold of 10 %, both JT and NJT passed with rate of more than 95 % and both gamma passing rate decreased more than 1 % in IMRT as the low dose threshold decreased to 5 % and 0 %. For the case of JT in IMRT on PTV without celiac area, $V_5$ and $V_{10}$ of both lung showed a decrease by respectively 8.5 % and 5.3 % in average and up to 14.7 %. A $D_{mean}$ decreased by $72.3{\pm}51cGy$, while there was an increase in radiation dose reduction in PTV including celiac area. A $D_{mean}$ of heart decreased by $68.9{\pm}38.5cGy$ and that of spinal cord decreased by $39.7{\pm}30cGy$. For the case of JT in VMAT, $V_5$ decreased by 2.5 % in average in lungs, and also a little amount in heart and spinal cord. Radiation dose reduction of JT showed an increase when PTV includes celiac area in VMAT. Conclusion: In the radiation treatment planning for esophageal cancer, IMRT showed a significant decrease in $V_5$, and $V_{10}$ of both lungs when applying JT, and dose reduction was greater when the irradiated area in low-dose field is larger. Therefore, IMRT is more advantageous in applying JT than VMAT for radiation therapy of esophageal cancer and can protect the normal organs from MLC leakage and transmitted doses in low-dose field.

Research for Lateral Penumbra and Dose Distribution When Air Gap Changing in Proton Therapy Case (양성자치료시 Air Gap 변화에 따른 Lateral Penumbra와 선량분포 변화에 대한 비교 및 연구)

  • Kim, Jae-Won;Sim, Jin-Seob;Jang, Yo-Jong;Kang, Dong-Yun;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • Purpose: In the treatment of high-energy protons Air gap (the distance between the patient and the exit Beam) Lateral Penumbra of the changes to the increase in the radiation fields can form unnecessary and Increase the maximum dose at the site of treatment and reduced the minimum dose homogeneity of dose distributions can decline. Air gap due to this change in dose distribution compared to investigate studied. Materials and Methods: Received proton therapy at our institution Lung, Liver patients were selected and the size of six other Air gap in Field A and Field B 2, 4, 6, 8, 10 cm Proton external beam planning system by setting up a treatment plan established. Air gap according to the Lateral Penumbra area and DVH (Dose Volume Histogram) to compare the maximum dose and minimum dose of PCTV areas were compared. In addition, the dose homogeneity within PCTV Homogeneity index to know the value and compared. Results: Air gap (2, 4, 6, 8, 10 cm) at each change in field size were analyzed according to the Lateral Penumbra region Field A Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 28.7% and Field B Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 31.6%. The result of DVH analysis for relative dose of the maximum dose According to Air gap 2~10 cm is the mean average of 110.3% from 108.1% to a sustained increased by approximately 2.03% and The average relative dose of minimum dose is the mean average of 93.9% percent to 90.8 percent from the continuous decrease of about 3.31 percent. The result of Homogeneity index value to the according to Air gap 2~10 cm is the 2-fold increase from 1.09 to 2.6. Conclusion: In proton therapy case, we can see the increasing of lateral penumbra area when airgap getting increase. And increasing of Dmax and decreasing Dmin in the field are making increase homogeneity index, So we can realize there are not so good homogeneity in the PCTV. Therefore we should try to minimize air gap in proton therapy case.

  • PDF

Dose distribution at junctional area abutting X-ray and electron fields (X-선과 전자선의 인접조사에서 접합 조사면에서의 선량분포)

  • Yang, Kwang-Mo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.91-99
    • /
    • 2004
  • Purpose : For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Materials and methods : Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1Gy) were exposes to 8cm depth and surface(SSD 100cm) of phantom. The dose distribution to the junction line between photon($10cm{\times}10cm$ field with block) and electron($15cm{\times}15cm$ field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). Results : At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to $6\%$ of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was $4.5-30\%$ of reference dose in the electron field. Conclusion : When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  • PDF