• Title/Summary/Keyword: 선량 감소

Search Result 1,219, Processing Time 0.027 seconds

Reduction of Electron Contamination Using a Filter for 6MV Photon Beam (6MV 광자선에서 전자오염 감소에 관한 연구)

  • Lee, Choul-Soo;Yoo, Myung-Jin;Yum, Ha-Yong
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 1997
  • Purpose : Secondary electrons generated by interaction between Primary X-rar beam and block tray in megavoltage irradiation, result in excess soft radiation dose to the surface layer To reduce the surface dose from the electron contamination, electron filters were attached under the tray when a customized block was used. Materials and Methods : Cu, Al or Cu/Al combined Plate with different thickness was used as a filter and the surface dose reduction was measured for each case. The measurement to find optimal filter was performed with $10m\times10cm$ field size and 78.5cm source to surface distance. The measurement points are positioned with 2mm intervals from surface to maximum build-up point. To acquire the effect of field size dependence on optimal electron filter, the measurement was performed from $4cm\times4cm\;to\;25cm\times25cm$ field sizes. Results : The surface dose was slowly increased by increasing irradiation field but rapidly increased beyond $15cm\times15cm$ field size. Al plate was found to be inadequate filter because of the failure to have surface dose kept lowering than the dose of deep area. Cu 0.5mm plate and Cu/Al=0.28mm/1.5mm combined plate were found to be optimal filters. By using these 2 filters, the absorbed dose to the surface layer was effectively reduced by $5.5\%,\;11.3\%,\;and\;22.3\%$ for the field size $4cm\times4cm,\;10m\times10cm,\;and\;25cm\times25cm$, respectively. Conclusion : The surface dose attributable to electron contamination had a dependence on field size. The electron contamination was increased when tray was used. Specially the electron contamination in the surface layer was greater when the larger field was used. 0.5mm Cu Plate and Cu/Al=0.28mm/15mm combined plates were selected as optimal electron filters. When the optimal electron filter was attached under the tray, excessive surface dose was decreased effectively The effect of these electron filters was better when a larger field was used.

  • PDF

Dosimetric and clinical review on the application of TOMO_edge mode (토모테라피 Edge 모드를 이용한 임상적 유용성 고찰)

  • Kim, Lizzy
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.177-182
    • /
    • 2014
  • Purpose : The goal of this study was to compare and analysis the dose distribution and treatment time between Tomotherapy planning with fixed jaw(FJ) and dynamic jaw(DJ). Materials and Methods : Seven patients were selected in the study including five common clinical cases(brain, head and neck(HN), lung, prostate, spine). 1) Helical Tomotherapy plans with FJ and DJ were generated with the same planning parameters such as Modulation factor, Pitch and Field width. 2) Tomo_edge plans with a larger field width were generated to compare to conventional HT delivery with fixed jaw. Dosimetric evaluation indices for target coverage are Dmin, Conformity index(CI) and for whole body including target are $V_{10%}$, $V_{25%}$, $V_{50%}$, $V_{75%}$ using Dose-volume histogram(DVH). Also, Treatment time and Cumulative MU were used for clinical review on Tomo_edge. Results : In case of using the same field width of Tomotherapy planning with FJ and DJ, the averaged variations were $V_{10%}$: -11.91%, $V_{25%}$: -7.6%, $V_{50%}$ :-4.75%, $V_{75%}$: -1.04%. Tomo_edge with a larger field width provides the averaged variations for target coverage: Dmin: -0.72%, CI: -1.25% and also shows the tendency of a sharp $V_{x%}$ decline in low dose area. The clinical improvements in the larger field width with DJ were observed in the treatment time, ranging from -51.21% to -15.11, and the Cumulative MU decrease, ranging from -57.74% to -15.31%. Conclusion : Target coverage achieved by FJ and DJ with the same field width has little differences. But integral doses on whole body efficiently decreased. Compared to the conventional HT delivery, Tomo_edge with a larger field width presents a little worse target coverage. However, it provides faster treatment delivery and improved cranial-caudal target dose conformity. Therefore, Tomo_edge mode is efficient in improving the treatment time and integral dose while maintaining comparable plan quality in clinic.

Reducing Methods of Patient's Exposed Dose Using Auto Exposure Control System in Digital Radiography (디지털 방사선장비에서 자동노출제어 사용 시 환자피폭선량 감소 방안)

  • Shin, Seong-Gyu
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.111-122
    • /
    • 2013
  • This study was carried out to reduce patient dose through focus-detector distance, kilovoltage, and a combination of copper filters. In the C, L-spine lateral, Skull AP views were obtained by making changes of 60-100 kV in tube voltage and of 100-200 cm in focus-detector distance and by adding a copper filter when using an auto exposure control device in the digital radiography equipment. The incident dose showed 90 kV, 0.3 mmCu in C-spine lateral with 0.06 mGy under the condition of 200 cm; 100 kV, 0.3 mmCu with 0.40 mGy under the condition of 200 cm and 90 kV 0.3 mmCu in Skull AP with the lowest value of 0.24 mGy under the condition of 140 cm. It was observed that entrance surface dose decreased the most when was increased by 150 cm, 70 kV (C-spine lateral), 81 kV (L-spine lateral). It was also found out that as the between the focus-detector increased in the expansion of the video decreased but the difference was not significant when the distance was 180 cm or more. Skull AP showed the most reduction in the entrance surface dose when the tube voltage was changed by 80 kV, 0.1 mmCu, and 120 cm. Therefore, when using the automatic exposure control device, it is recommended to use the highest tube voltage if possible and to increase focus-detector distance at least by 150~200 cm in wall and 120~140 cm in table in consideration of the radiotechnologist's physical conditions, and to combine 0.1~0.3 mmCu and higher filters. It is thus expected to reduce patient dose by avoiding distortion of images and reducing the entrance surface dose.

Optimization of Image Quality according to Sensitivity and Tube Voltage in Chest Digital Tomosynthesis (디지털 흉부단층합성검사에서 감도와 관전압 변화에 따른 영상 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.541-547
    • /
    • 2018
  • To evaluate the effect of dose and image quality for Chest Digital Tomosynthesis(CDT) using sensitivity and tube voltage(kV). CDT images of the phantom were acquired varying sensitivity 200, 320, 400 according to set tube voltage of 125 kV and 135 kV. The dose and Dose Area Product(DAP) according to change of sensitivity and kV were evaluated and Image quality was evaluated by PSNR, CNR, SNR using Image J. Dose were lowered 14~23% less than sensitivity 200, 125 kV and DAP were lowered 13~26% less than sensitivity 200, 125 kV. PSNR were over 27 dB, which were significant value and CNR, SNR were better as sensitivity value was lower. But there were different statistical significant to each item. CNR and SNR were not statistically significant at sensitivity 320, 135 kV(P>0.05). CDT can improve image quality with lower radiation dose using better than quality and correction power at digital radiography system.

The Additional Filter and Ion Chamber Sensor Combination for Reducing Patient Dose in Digital Chest X-ray Projection (디지털 흉부엑스선 검사에서 환자선량 감소를 위한 부가필터와 Ion chamber 센서 조합)

  • Lee, Jinsoo;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, we studied additional filter and Ion chamber combinations to reduce patient dose without decreasing image quality in digital chest x-ray projection. The experiment set 125 kVp, 320 mA, AEC mode. Ion chamber sensors was divided by 4 cases of combinations, then, we measured patient dose and calculated organ dose using PCXMC. Also, physical image assessment using MTF was performed. As a results, The surface entrance dose and organ dose were the lowest when selecting both left and right Ion chamber sensors under the same conditions of additional filter. In image quality assessment, The spatial frequency scored 2.494 lp/mm which was highest when selecting both right and left Ion-chambers and 0.1 mmCu filter. And to conclude, to select both right and left Ion chamber sensors and 0.1 mmCu filter will help for acquiring good quality image as well as reducing patient dose.

A Study on Irradiation Effect by $Co^{60}$ of the R-C Series-Parallel Circuits (방사선조사에 의한 R-C 직.병렬회로에서의 손상효과에 관한 연구)

  • 서국철;조성욱
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.1 no.2
    • /
    • pp.57-61
    • /
    • 1987
  • The characteristis of all the instruments and materials used in atomic industry are changed due to irradiation damages by the effects of radiation activities. In this study when R-C series-parallel circuits are irradiated by $\gamma$-ray, variations in its electrical properties have been investigated. The following results are obtained. 1) In the R-C series circuit, the impedance variation ratio is increased as the irradiation quantity is increased up to $10^6[r]$, and above $10^6[r]$, the impedance variation ratio reached at the saturated condition. In the saturated condition, the increasing value was about 1.25 (%). 2) In the R-C series circuit, the power factor variation ratio is decreased as the irradiation quantity is in creased up to $10^6[r]$, and above $10^6[r]$, the power factor variation ratio reached at the saturated condition. In the saturated condition, the decreasing value was about 0.5(%). 3) In the R-C parallel circuit, the impedance variation ratio is increased as the irradiation quentity is increased up to $10^6[r]$, and above $10^6[r]$, the impedance variation reached at the saturated condition. In the saturated condition, the increasing value was about 0.5.(%). 4) In the R-C parallel circuit, the power factor variation ratio is decreased as the irradiation quantity is increased up to $10^6$[r], and above $10^6$[r], the power factor variation ratio reached at the saturated condition. In the saturated condition, the decreasing value was about 1.3(%).

  • PDF

Variation of Image Quality and Dose by Applying Multi-Leaf Collimator for Digital Mammography (디지털 유방촬영장치에서 다엽 조리개 적용으로 인한 화질과 선량의 변화)

  • Kwon, Soon Mu;Kim, Boo Soon;Park, Hyung Jun;Kang, Yeong Han
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.535-540
    • /
    • 2015
  • Collimator has important functions with control primary X-ray that decrease radiation exposure dose for patients and reduce scatter ray and make better quality of image. But there are no regulations for X-ray mammography device of collimator, so widely used device adopt rectangularly controlled collimator. Though digital X-ray mammography device expand supply recently, rectangularly controlled collimator of film/screen mode still used. After searching for real condition of beam field with digital mammography, we made a multi-leaf collimator which is able to adjust the beam field in accordance with size and shape of breast, and we measuring up the transitions of image quality, average glandular dose(AGD) and, Dose area product(DAP). There are no significant differences between rectangularly controlled collimator and multi-leaf collimator, and DAP value decreased by 50.72%. As conclusion, there needs to expand the use of multi-leaf collimator for optimum adoption of beam field in digital mammography, and also need to develop an automatic regulation of beam field for reduce of exposure dose to patients.

Medical Radiation Exposure in Children CT and Dose Reduction (소아 CT 촬영시 방사선 피폭과 저감화 방법)

  • Lee, Jeong-Keun;Jang, Seong-Joo;Jang, Young-Ill
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.356-363
    • /
    • 2014
  • Recently pediatric CT has been performed by reduced dose according to tube current modulation이라고, this fact has a possibility more reduce a dose because of strong affect depend on tube current modulation. Almost all MDCT snow show and allow storage of the volume CT dose index (CTDIvol), dose length product (DLP), and effective dose estimations on dose reports, which are essential to assess patient radiation exposure and risks. To decrease these radiation exposure risks, the principles of justification and optimization should be followed. justification means that the examination must be medically indicated and useful. Results is using tube current modulation이라고 tend to the lower kV, the lower effective dose. In case of use a low dose CT protocol, we found a relatively lower effective dose than using tube current modulation. Average effective dose of our studies(brain, chest, abdomen-pelvis) less than 47%, 13.8%, 25.7% of germany reference dose, and 55.7%, 10.2%, 43.6% of UK(United Kingdom) reference dose respectively. when performed examination for reduced dose, we must use tube current modulation and low dose CT protocol including body-weight based tube current adaption.

Dose Reduction According to the Exposure Condition in Intervention Procedure : Focus on the Change of Dose Area and Image Quality (인터벤션 시 방사선조사 조건에 따른 선량감소 : 면적선량과 영상화질 변화를 중심으로)

  • Hwang, Jun-Ho;Jung, Ku-Min;Kim, Hyun-Soo;Kang, Byung-Sam;Lee, Kyung-Bae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.393-400
    • /
    • 2017
  • The purpose of this study is to suggest a method to reduce the dose by Analyzing the dose area product (DAP) and image quality according to the change of tube current using NEMA Phantom. The spatial resolution and low contrast resolution were used as evaluation criteria in addition to signal to noise ratio (SNR) and contrast to noise ratio (CNR), which are important image quality parameters of intervention. Tube voltage was fixed at 80 kVp and the amount of tube current was changed to 20, 30, 40, and 50 mAs, and the dose area product and image quality were compared and analyzed. As a result, the dose area product increased from $1066mGycm^2$ to $6160mGycm^2$ to 6 times as the condition increased, while the spatial resolution and low contrast resolution were higher than 20 mAs and 30 mAs, Spatial resolution and low contrast resolution were observed below the evaluation criteria. In addition, the SNR and CNR increased up to 30 mAs, slightly increased at 40 mAs, but not significantly different from the previous one, and decreased at 50 mAs. As a result, the exposure dose significantly increased due to overexposure of the test conditions and the image quality deteriorated in all areas of spatial resolution, low contrast resolution, SNR and CNR.

Dose Comparison Using Deformed Image Registration Method on Breast Cancer Radiotherapy (유방암 방사선치료에서 변형영상정합기법을 이용한 선량비교)

  • Won, Young Jin;Kim, Jong Won;Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • The purpose of this study is to reconstruct the treatment plan by applying CBCT and DIR to dose changes according to the change of the patient's motion and breast shape in the large breast cancer patients and to compare the doses using TWF, FIF and IMRT. CT and CBCT were performed with MIM6 to create DIRCT and each treatment plan was made. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) were determined and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram and the unique property of each organ. The value of HI of the PTV breast increased in all treatment planning methods using DIRCT, and CVI and CI were decreased in the treatment planning methods using DIRCT.