• Title/Summary/Keyword: 선량평가

Search Result 1,830, Processing Time 0.025 seconds

Evaluation of Breast Dose in Mammography for Breast Implant Patient using a Monte Carlo Simulation (몬테칼로 모의모사를 이용한 유방성형술 환자의 유방선량평가)

  • Kim, Ji-Soo;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.253-259
    • /
    • 2020
  • Mammography has the advantage of being economical, simple and effective in detecting microcalcification, but breast is a highly sensitive organ and is accompanied by the risk of an over-exposure. While accurate dose assessments are important to prevent this, current breast dose assessments are limited to breast implant patients. This purpose of this study was to identify dose variations due to tube voltages by forming a mock-up with breast implants for an accurate dosimetric assessment on breast implant patients. As a result, doses from the presence of breast implants were smaller than those from the absence of the mammal. As the result of the change of the voltage to 26, 28, 30, and 32 kV, the imcreased tube voltage included larger dose regardless of the presence of Breast implant. Therefore, it is believed that diagnosis recommendations for breast implants will be possible if further studies on internal and external bioretical imaging and quality assessment are carried out as the basis for this study.

Assessment of Occupational Dose to the Staff of Interventional Radiology Using Monte Carlo Simulations (몬테카를로 방법을 이용한 중재방사선시술자에 대한 선량평가)

  • Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • Medical operations and diagnosis using interventional radiology techniques have been increased. The management and monitoring of occupational radiation exposure to the staff of interventional radiology become important, specially because they stand in close proximity to the patient. The operational radiation protection quantity, Hp(10) which can be obtained from personal dosimeter do not always represent the effective dose to the staff. So, in this study, to estimate the critical organ doses to the staff of interventional radiology, Monte Carlo calculations with mathematical human phantom and dose measurements with personal dosimeters were carried out for the major interventional radiology procedures using C-arm. Results showed that the values of Hp(10) measured by personal dosimeters were higher than critical organ doses which were calculated. And the calculated dose to thyroids was much higher than those of other critical organ doses. For the proper radiation protection of the medical staff of interventional radiology, additional radiation protection for thyroids as well as for whole body shielding like wearing a lead apron should be considered.

Design of a TL Personal Dosimeter Identifiable PA Exposure and Development of Its Dose Evaluation Algorithm (후방피폭선량계측이 가능한 TL 개인선량계의 설계 및 선량평가 알고리즘 개발)

  • Kwon, J.W.;Kim, H.K.;Yang, J.S.;Kim, J.L.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • A single-dosimeter worn on the anterior surface of body of a worker was found to provide significant underestimation of dose to the worker when radiation comes from behind of the human body. Recently, several researchers suggested that this kind of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. But this multiple dosimetry also has the disadvantages like overestimation lowering work efficiency or cost burden. In this study, a single dosimeter introducing asymmetric filters enabled to identify PA exposure was designed by monte-carlo simulation and experiments and its dose evaluation algorithm for AP-PA mixed radiation field was established. This algorithm was applicable to penetrating radiation which had the effective energy more than 100 keV. Besides, the dosimeter and algorithm in this study were possible to be applied to near PA exposure.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

구동 팬톰 시스템을 통한 내부 장기 움직임의 선량 평가

  • Kim, Jae-Gyun;Kim, Yun-Jong;Lee, Dong-Han;Lee, Dong-Hun;Kim, Mi-Suk;Jo, Cheol-Gu;Ryu, Seong-Ryeol;Yang, Gwang-Mo;Yu, Hyeong-Jun;Ji, Yeong-Hun
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.64-67
    • /
    • 2005
  • 본 연구의 목적은 호흡 운동에 영향을 받는 내부 장기의 움직임을 정량적으로 분석하고, 그 결과를 토대로 움직이는 내부 장기의 선량 분포를 측정하고 평가하는 것이다. 그리고 이전에 보고된 논문에서 개발된 움직임 감소 장치의 사용 유무에 따른 내부 장기의 선량 분포 또한 분석하는 것이다. 이를 위하여 1차원적으로 움직이는 구동 팬톰 시스템을 개발하였고, 6MV X-ray에서 Kodak X-omat V 필름을 사용하여 움직이는 내부 장기의 선량분포를 실험적으로 측정하였다. 이 결과로부터 호흡 운동으로 인한 움직이는 내부 장기 및 종양에 조사되는 선량의 부정확도를 평가할 수 있었고, 움직임 감소 장치를 사용했을 때 선량의 부정확도가 감소함을 확인할 수 있었다.

  • PDF

Assessment of Effective Dose from Diagnostic X-ray Examinations of Adult (진단X선에 의한 성인의 진단행위별 유효선량평가)

  • Kim, Woo-Ran;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.155-164
    • /
    • 2002
  • Methodology to evaluate the effective doses to adults undergoing various diagnostic x-ray examinations were established by Monte Carlo simulation of the x-ray examinations. Anthropomorphic mathematical phantoms, the MIRD5 male phantom and the ORNL female phantom, were used as the target body and x-ray spectra were produced by the x-ray spectrum generation code SPEC78. The computational procedure was validated by comparing the resulting doses to the results of NRPB studies for the same diagnostic procedures. The effective doses as well as the organ doses due to chest, abdomen, head and spine examinations were calculated for x-rays incident from AP, PA, LLAT and RLAT directions. For instance, the effective doses from the most common procedures, chest PA and abdomen AP, were 0.029 mSv and 0.44 mSv, respectively. The fact that the effective dose from PA chest x-ray is far lower than the traditional value of 0.3 mSv(or 30 mrem), which results partly from the advances of technology in diagnostic radiology and partly from the differences in the dose concept employed, emphasizes necessities of intensive assessment of the patient doses in wide ranges of medical exposures. The methodology and tools established in this study can easily be applied to dose assessments for other radiology procedures; dose from CT examinations, dose to the fetus due to examinations of pregnant women, dose from pediatric radiology.

Development and Evaluation of Silicon Passive Layer Dosimeter Based Lead-Monoxide for Measuring Skin Dose (피부선량 측정을 위한 Lead-Monoxide 기반의 Silicon Passive layer PbO 선량계 개발 및 평가)

  • Yang, Seung-Woo;Han, Moo-Jae;Jung, Jae-Hoon;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.781-788
    • /
    • 2021
  • Due to the high sensitivity to radiation, excessive exposure needs to be prevented by accurately measuring the dose irradiated to the skin during radiation therapy. Although clinical trials use dosimeters such as film, OSLD, TLD, glass dosimeter, etc. to measure skin dose, these dosimeters have difficulty in accurate dosimetry on skin curves. In this study, to solve these problems, we developed a skin dosimeter that can be attached according to human flexion and evaluated its response characteristics. For the manufacture of the dosimeter, lead oxide (PbO) with high atomic number (ZPb: 82, ZO: 8) and density (9.53 g/cm3) and silicon binders that can bend according to human flexion were used. In the case of a dosimeter made of PbO material, the performance degradation has been prevented by using parylene and others due to the presence of degradation due to oxidation, but the previously used parylene is affected by bending, so a new form of passive layer was produced and applied to the skin dosimeter. The characteristic evaluation of the skin dosimeter was evaluated by analyzing SEM, reproducibility, and linearity. Through SEM analysis, bending was evaluated, reproducibility and linearity at 6 MeV energy were evaluated, and applicability was assessed with a skin dosimeter. As a result of observing the dosimeter surface through SEM analysis, the parylene passive layer PbO dosimeter with the positive layer raised to the parylene produced cracks on the surface when bent. On the other hand, no crack was observed in the silicon passive layer PbO dosimeter, which was raised to silicon passive layer. In the reproducibility measurement results, the RSD of the silicon passive layer PbO dosimeter was 1.47% which satisfied the evaluation criteria RSD 1.5% and the linearity evaluation results showed the R2 value of 0.9990, which satisfied the evaluation criteria R2 9990. The silicon passive layer PbO dosimeter was evaluated to be applicable to skin dosimeters by demonstrating high signal stability, precision, and accuracy in reproducibility and linearity, without cracking due to bending.