• Title/Summary/Keyword: 선량률 지도

Search Result 89, Processing Time 0.038 seconds

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.

Study on Development of Patient Effective Dose Calculation Program of Nuclear Medicine Examination (핵의학검사의 환자 유효선량 계산 프로그램 제작에 관한 연구)

  • Seon, Jong-Ryul;Gil, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.657-665
    • /
    • 2017
  • The aim of this study was to develop and distribute a dedicated program that can easily calculate the effective dose of a patient undergoing nuclear medicine examinations, and assist in the study of dose of nuclear medicine examinations and information disclosure. The program produced a database of the effective dose per unit activity administered (mSv/MBq) of the radiopharmaceuticals listed in ICRP 80, 106 Report and the fourth addendum, was designed through Microsoft Visual Basic (In Excel) to take the effect of 5 different (Area, Clark, Solomon(=Fried), Webster, Young) of pediatric dose calculation methods and 7 different body surface area calculation methods. The program calculates the effective dose (mSv) when the age, radionuclide, substance, and amount injected in the human body is inputted. In pediatric cases, when the age is entered, the pediatric method is activated and the pediatric method to be applied can be selected. When the BSA (Body Surface Area) formula is selected in the pediatric calculation method, a selection window for selecting the body surface area calculation method is activated. When the adult dose is input, the infant dose and the effective dose (mSv) are calculated automatically. The patient effective dose calculation program of the nuclear medicine examinations produced in this study is meaningful as a tool for calculating the internal exposure dose of the human body that is most likely to be obtained in nuclear medicine examinations, even though it is not the actual measurement dose. In the future, to increase the utilization of the program, it will be produced as an application that can be used in mobile devices, so that the public can access it easily.

A Study on Dose Assessment by 18F-FDG injected into Patients (환자에게 주입된 18F-FDG 의한 선량 평가에 대한 연구)

  • Kim, Chang-Ju;Kim, Jang-Oh;Jeong, Geun-Woo;Shin, Ji-Hey;Lee, Ji-Eun;Jeon, Chan-Hee;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.467-475
    • /
    • 2020
  • The purpose of this study is to assess doses to 18F-FDG, a radioactive drug, during PET examinations, to alleviate anxiety about radiation in patients and carers, to minimize the indiscriminate examination progress caused by medical institution personnel and space clearance problems, and health examination. The dose assessment was measured using a thermo-fluorescent dosimeter (TLD) and an electronic personal dosimeter (EPD) at the location of the cervical (hypothyroid), thorax (heart), and lower abdomen (breeding line) which are the three highest tissue areas of the radiation tissue weighting. In addition, spatial dose rates and radioactivity in urine were measured using GM counters and ion boxes. The results are as follows: First, the personal dosimeter TLD was measured 0.0425±0.0277 mSv in the cervical region, 0.0440±0.0386 mSv in the thorax and 0.0485±0.0436 mSv in the lower abdomen, with little difference in the heart dose depending on radiation sensitivity. The EPD was measured at 0.942±0.141 mSv/h immediately after the cervical position, and 0.192±0.031 mSv/h after 120 minutes. Immediately after the thorax position, 0.516±0.085 mSv/h, 120 minutes later 0.128±0.040 mSv/h. Immediately after the lower abdomen position, 0.468±0.091 mSv/h, and after 120 minutes 0.105±0.021 mSv/h were measured. The spatial dose rate at the GM counter was measured immediately at 0.041±0.005 mSv/h, 120 minutes later at 0.014±0.002 mSv/h. The radioactivity in urine using ion chamber was measured at 0.113±0.24 MBq/cc after 60 minutes and 0.063±0.13 MBq/cc after 120 minutes. As a result, 18F-FDG should be administered, dose re-evaluated two hours after the PET test is completed, and caregivers should be avoided. In addition, it is deemed necessary to provide patients and carers with sufficient explanations and expected values of exposure dose to avoid reckless testing. It is hoped that the data tested in this study will help patients and families relieve anxiety about radiation, and that the radiation workers' exposure management system and institutional improvements will contribute to the development of medical radiation.

The dosimetric Properties of Electron Beam Using Lyon Intraoperative Device for Intraoperative Radiation Therapy (LID (Lyon Intraoperative Device) 이용한 수술중 방사선치료시 전자선의 선량분포 특성)

  • Kim Kye Jun;Park Kyung Ran;Lee Jong Young;Kim Hie Yeon;Sung Ki Jocn;Chu Sung Sil
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.85-93
    • /
    • 1992
  • We have studied the dosimetric properties of electron beam using Lyon intraoperative device for intraoperative radiation therapy. The dosimetry data had compiled in such a way that a quick and correct decision regarding the cone shape, energy, and accurate calculations could be made. Using 3 dimensional water phantom, we have got the following data: cone output ratios, surface dose, $d_{max}$, $d_{90}$, flatness, symmetry, beam profiles, isodose curve, and SSD correction factors. The cone output ratios were measured with straight and bevelled cone, respectively. As the cone size and the energy were reduced, the cone output ratios decreased rapidly. With the flattening filter, the surface dose increased by electron beam to $85.3\%$, $89.2\%$, and $93.4\%$, for 6 MeV, 9 MeV, and 12 MeV, respectively. It is important to increase the surface dose to $90\%$ or more. Inspite of diminishing dose rate and beam penetration, this flattening filter increases the treatment volume significantly. With the combination of the three levels collimation and the flattening filter, we achieved good homogeneity of the beam and better flatness and the diameter of the 90$\%$ isodose curve was increased. It is important to increase the area that is included in the $90\%$ isodose level. The value of measured and calculated SSD correction factors did not agree over the clinically important range from 100 cm to 110 cm.

  • PDF

Induction of Petal Color Mutants through Gamma Ray Irradiation in Rooted Cuttings of Rose (장미 삽목묘의 감마선 처리에 의한 화색 돌연변이체 유기)

  • Koh, Gab-Cheon;Kim, Min-Za;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.796-801
    • /
    • 2010
  • This study was carried out to establish a system for mutation breeding by irradiation of gamma-ray in $Rosa$ $hybrida$ Hort. The rooted cuttings of two roses, 'Spidella' and 'Cabernet' were irradiated with different gamma-ray doses (0, 30, 50, 70, 90, 110, 130, 150 and 170 Gy) from a $^{60}Co$ source to reveal an optimal dose for induction of mutants. The irradiated plants were planted in a greenhouse, and investigated on the appearance of petal color mutants and shoot growth by gamma ray dose. The 50% lethal doses ($LD_{50}$) of plant were 110 Gy for 'Spidella' and 150 Gy for 'Cabernet', respectively. The 50% decrease dose of shoot length was observed at 70-90 Gy dose for 'Spidella', and 110 Gy dose for 'Cabernet'. Solid, chimeric and mosaic petal mutants with various colors were induced from pink petal of 'Spidella' and red petal of 'Cabernet' when 30-170 Gy dose was irradiated. The mutants obtained from 'Spidella' had white, ivory, pinky ivory, light pink and deep pink petal colors. The mutants obtained from 'Cabernet' had pink, deep pink, purple red (magenta), orange red and purple petal colors. It was suitable to irradiate 70-90 Gy dose for 'Spidella' and 90-110 Gy dose for 'Cabernet' for the induction of various mutants considering plant survival rate, shoot growth and mutant occurrence rate.

Dose Assessment of Orbital Adnexa in Electron Beam Therapy for Orbital Lymphoma (안와림프종의 전자선 치료 시 안구 부속기관에 대한 선량평가)

  • Dong Hwan Kim;Yong In Cho
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.283-292
    • /
    • 2024
  • Radiation side effects and complications on the ocular adnexa during electron beam therapy for orbital lymphoma can increase the incidence of posterior subcapsular cataracts. This study simulated a medical linear accelerator and a mathematical model of the eye using monte carlo simulations to evaluate the dose to the ocular adnexa and compare the shielding effectiveness on different parts of the ocular adnexa based on lens shield thickness. The dose assessment results of the ocular adnexa showed that the lens's sensitive area had the highest absorbed dose distribution when no shield was used, followed by the lens's non-sensitive area, the anterior chamber, vitreous humor, cornea, and eyelid in descending order. With the use of a shield, a 2 mm thick shield demonstrated a dose reduction effect of over 90% in the lens's sensitive area, over 83% in the non-sensitive area and anterior chamber, and a dose reduction effect of 30 to 62% in the vitreous body, cornea, and eyelid. For dose reduction in the lens's sensitive area during electron beam therapy for orbital lymphoma, it is necessary to use a shield of at least 2 mm thickness. Additionally, shielding strategies considering the thickness and area of the shield for other ocular adnexa besides the lens are required.

The Survey for Awareness of Radiation Dose of CT and General X-ray Examination (전산화단층촬영검사와 일반촬영검사의 방사선 선량에 대한 인식도 조사)

  • Joo, Young-Cheol;Lim, Cheong-Hwan;Jung, Hong-Ryang;You, In-Gyu;Cho, Han-Byul;Yang, Oh-Nam;Kim, Min-Cheol;Yoon, Joon
    • Journal of radiological science and technology
    • /
    • v.35 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • The goal of this study is to awaken about risk occurred by CT examination. For radio-technologists working at 'S medical center' located in Seoul, we investigated a recognition about dose and risk CT and normal X-ray examination according by working experience in hospital, experience about CT examination and radiation source. For subjects of investigation, radio-technologists working at 'S medical center' located in Seoul helped us. We collected 131 questionnaires for a test of hypothesis. Cronbach @ coefficients of questionnaires were 0.825988 and 0.767161 and a rejection rate of p-value was below 0.05. SAS 9.1(SAS Institute Inc., Cary, NC, USA.) statistic package was used for hypothesis test. We used Mann-Whitney test, Kruskai-Wallis test, Two sample T-test, Two sample T-test with Bonferroni's Correction and One-way ANOVA methods. P-values of hypothesis about dose of CT and normal X-ray examination were 0.2291 ~ 0.9663. p-values of hypothesis about risk were 0.1924 ~ 1.0000. All of hypothesis is over rejection rate(<0.05). This study shows that radio-technologists of S medical center recognized that CT has higher dose and risk than general X-ray examination.

Research on the Hematological Changes in Accordance with Radiation Dose and Radiation Exposure period of the Medical Radiation Workers (의료 방사선 종사자의 피폭기간 및 피폭선량과 혈액성분 변화에 대한 조사)

  • Cho, Jihwan;Jin, Seongjin;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.495-502
    • /
    • 2016
  • In this study, we analyzed the effects of radiation exposure, as compared to the hematological parameters change of medical radiation workers and the public. The mean value of all hematological parameters were in the normal range. Eosin mean value of the radiation workers($2.52{\pm}1.79%$) showed that a significantly lower than the control group($2.92{\pm}1.39%$). In the comparison of the results depending on the occupation period, it showed high value that the mean of the radiation workers group WBC, platelet, Lymph, Mono, Baso. Over 20 years of radiation workers WBC, Mono showed low values and less than 10 years of radiation workers mean value of Baso showed low values, there was no statistical significance. In the comparison of the results depending on the 4 years cumulative radiation dose, Over 5.0 mSv of Radiation works RBC($4.61{\pm}0.53$ vs $4.91{\pm}0.38$), Hct($41.51{\pm}4.07$ vs $43.97{\pm}3.40$), Eosin($1.74{\pm}1.14$ vs $2.92{\pm}1.39$) showed low value, it was statistical significance. 0.5~1.0 mSv radiation exposure workers Hb ($13.93{\pm}1.75$) showed a significantly lower value than that of the control group ($14.90{\pm}1.29$).

Study of Radiation dose Evaluation using Monte Carlo Simulation while Treating Extrahepatic Bile Duct Cancer with High Dose Rate Intraluminal Brachytherapy (간외 담도암 고선량률 관내근접방사선치료 시 몬테카를로 시뮬레이션을 통한 주변장기의 선량평가 연구)

  • Park, Ju-Kyeong;Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.467-474
    • /
    • 2014
  • The relative dose calculated by MCNPX and the relative dose measured by ionization chamber and solid phantoms evaluated the accuracy comparing with Monte Carlo simulation. In order to apply Monte Carlo simulation the intraluminal brachytherapy of extrahepatic bile duct cancer, 192Ir sealed radioactive source replicate, Bile duct and surrounding organs were made using KMIRD phantom based on a South Korea standard man. To check the absorbed dose of normal organs around bile duct, we set the specific effective energy and initial radioactivity to 1 Ci using MCNPX. Evaluation of the accuracy of the Monte Carlo simulation, the difference of the relative dose is the most 1.96% that satisfy the criteria that is the relative error less than 2% suggested by MCNPX code. In addition, The specific effective energy and absorbed dose of normal organs that were relatively adjacent to bile duct such as right side of kidney, liver, pancreas, transverse colon, spinal cord, stomach and small intestine were relatively high. on the contrary, the organs that were relatively distant to bile duct such as left side of kidney, spleen, ascending colon, descending colon and sigmoid colon were relatively low.