• Title/Summary/Keyword: 선도-추종

Search Result 96, Processing Time 0.02 seconds

A Study on INS's initial attitude error reducing methods at navigation mode entry in vibration environment (진동 환경에서 관성항법장치 항법진입 자세오차 감소기법 연구)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.545-550
    • /
    • 2009
  • Generally, the smoothing pre-filter of sensor's raw measurement(accelerometer and gyroscope) is used for INS's fast alignment. When the pre-filter is abruptly removed at Navigation-mode entry in vibration environment, INS's initial attitude error can be largely generated. So that we propose initial attitude error reducing methods(monotone increasing of cutoff-frequency, real-time attitude estimation), these are proved by simulation.

Droop Control for Parallel Inverters Using Virtual Inductor with load sharing and voltage regulation (병렬형 인버터의 부하 분담과 부하 전압 레귤레이션을 고려한 가상 인덕터 기반의 드룹 제어)

  • Kim, Dong Hwan;Jeon, Jaeryang;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.173-174
    • /
    • 2015
  • 복합 성분으로 구성 되어 있는 선로임피던스 하에서 인버터 병렬 운전을 위한 드룹 제어 방식을 다루고 있다. 드룹 제어 방식은 선로 임피던스가 복합 성분으로 구성되어 있는 경우 유무효 전력의 분담에 있어서 여러 가지 이유로 오차를 발생시킨다. 이러한 오차에 대한 대책으로 가상 임피던스의 적용은 전력 간섭성분 제어로 전력 분담의 오차는 해결되었다. 하지만 대전류가 흐르는 대용량 시스템에서는 가상 임피던스로 인한 전압 강하가 커지게 되므로 설정한 유효전력을 추종하지 못하게 된다. 본 논문에서는 위의 사항을 고려하여 복합 성분으로 구성 되고 불평형인 선로임피던스와 하에서 유무효전력 분담을 개선하고자 하였으며 제안한 드룹 제어 방식을 기존의 방식과 비교 하였다. 제안한 드룹 제어 방식의 전력 분담은 PSIM과 실험을 통해 검증되었다.

  • PDF

간이 선박조종 시뮬레이터 개선에 관한 연구

  • Choe, Won-Jin;Jeon, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.257-258
    • /
    • 2019
  • 이 연구는 기 개발한 간이 선박조종 시뮬레이터의 조종성능 개선에 관한 것이다. 선박조종 시뮬레이터에서 모델선박의 조종성 지수는 임의로 정하는 것이 아니라 가능한 모델대상선박의 실제 움직임과 동등하거나 유사하게 설정되어야 한다. 선행연구에서는 이미 발표된 대학교 실습선(한바다호)의 선박조종 실선데이터를 기반으로 모델선박의 조종성 지수를 도출하였으나, 타각이 10°를 초과할 경우 네 종류의 실선시험 결과와 평균 17.9%의 상대오차가 발생하였다. 이에, 타각 10°, 20° 및 35°에서의 한바다호 조종성 지수에 대해 에르미트 보간을 이용하여 3차 다항식을 산출하고, 이를 모델선박에 적용하였다. 그 결과 타각 35° 이내의 전 구간에서 조종성능의 상대오차가 평균 13.7%에서 11.6%로 약 2.1% 개선됨을 확인하였다.

  • PDF

A Study on the Maneuverabilities of the Training ship M.S. A-RA (실습선 아라호(M.S. A-RA)의 조종성능에 관한 연구)

  • 안영화;박명호;최환문;정용진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.275-284
    • /
    • 2001
  • The for this study, turning circle tests and maneuvering indices were conducted to study and evaluate the maneuverabilities of the fishery training ship M.S. A-RA(G/T : 990tons). The results obtained were summarized as follows : 1. The advances of the starboard and port of the turning circle were measured based on the dumb card test method were 198m, 192m, the size of tactical diameters of them were 194m, 188m, respectively. 2. The advances at the starboard and port of the turning circles were measured according to the DGPS positioning obtained 196m, 194m, the size of tactical diameters of them were 194m, 190m, respectively. 3. The results were compared which came from the sizes of turning circle measured up with the dumb card test method during the trial test and from the size of turning circle measured according to the DGPS positioning. The advance of the turning circle measured at the time of the starboard turning according to the DGPS positioning was 1m longer than that of the trial test. And it was 21m shorter at the time of the port turning. 4. The rudder was steered at $35^{\circ}$ of rudder angle each starboard and port while the ship M.S. A-RA was advancing at full speed of 13 k't. The velocity of the ship was reduced to 7.8 k't at $180^{\circ}$ of turning angle and 6.0 k't at $360^{\circ}$ of turning angle and mean values of turning angular velocity of the port and starboard were $2.4^{\circ}$/sec and $2.3^{\circ}$/sec, respectively. 5. The Z test at each $10^{\circ}$, $20^{\circ}$, and $30^{\circ}$ of rudder angle was carried out to have the maneuvering indices K and T measured. K for the each rudder angle were 1.24, 1.45, and 1.65 while T for the each rudder angle were 0.33, 0.20, and 0.14. That is, K at the Z test at $30^{\circ}$ was greater than at the Z test of $10^{\circ}$ and $20^{\circ}$ while T at the $30^{\circ}$ Z test was less than at the Z test of $10^{\circ}$ and 20.

  • PDF

A Study on the Ship's Performance of T.S. HANBADA(III) - The Evaluation of Maneuvering Performance with Actual Ship Trials - (실습선 한바다호의 운항성능에 관한 연구(III) - 실선시험을 통한 조종성능 평가 -)

  • Jung, Chang-Hyun;Lee, Hyong-Ki;Kong, Gil-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.439-445
    • /
    • 2008
  • Various turning tests were carried out according to the rudder angle, turning direction, and the speed etc. with the ship's maneuverability measuring system on the training ship HANBADA. After that they were compared with each other on the turning circle, maneuvering performance index and the distance of new course, and then found out that they were satisfied with the IMO maneuvering standards. And the turning circles of port were smaller than those of starboard with all the rudder angles and maneuvering indexes such as K and T were relatively bigger than other vessels. Also, the distance cf new course was measured to $125{\sim}300m$ in case of the new course on $30^{\circ}{\sim}90^{\circ}$. All of these results will be helpful to escape from collision and to alter course on coastal voyage.

The Synchronous Control System Design of a Dual Electric Propulsion System for Small Boats (소형 선박용 듀얼 전기추진시스템의 동기제어시스템 설계)

  • Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, electric propulsion systems are used for unmanned surface vehicle, fish finder boat, etc. Some of these propulsion systems can be constructed of two electric motors and propellers for advanced impellent force. In this case, the speed difference generated between two propellers, namely, the synchronous error has a bad influence on the energy efficiency and course error. In this study, a synchronous control system is designed to restrain synchronous error caused by disturbance and mismatched dynamic characteristics. The control system is composed of the reference model, pre-filters, speed controllers, and synchronous controllers. The reference model is used for calculating the decoupled synchronous error and control input for each propulsion system. The pre-filters and speed controllers are designed in order that the propulsion system may follow the reference signal without overshoot and input saturation. And the synchronous controllers are designed from the viewpoint of stable and quick synchronization through root locus mothed approach. Finally, the simulation results show that the designed control system is effective for the disturbance.

MANOEUVRABILITIES OF THE M.S. 'SAEBADA' ('새바다호의'의 조종성능에 관한 연구)

  • KIM Ki Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.209-215
    • /
    • 1979
  • The manoeuvrabilities of a ship are decided by the values of her manoeuvring indices. The manoeuvring indices consist of two kinds: indices K and T. The former decides a ship's turning ability and the latter, the length of time delay to a steady turning motion after her rudder has finished the turn of an ordered angle. In this paper, the author figured out the values of the manoeuvring indices of the m. s. 'SAEBADA' (GT: 2,275,7 ton), the training ship of tile National Fisheries University of Busan through her Z test and analyzed these values and the other data which were obtained from her Z test to study her manoeuvrabilities. The results of]tamed are summarized as follows: 1. The manoeuvring indices K' of the m. s. 'SAEBADA' were $1.052(at\;10{\circ}\;Z\;test)\;0.925(at\;20{\circ}\;Z\;test)\;and\;0.877(at\;30{\circ}\;Z\;test)$. Her manoeuvring indices $0.815(at\;10{\circ}\;Z\;test)\;0.502(at\;20{\circ}\;Z\;test)\;and\;0.441(at\;30{\circ}\;Z\;test)$. Her above calculated values K', T' showed that her obeying ability to the turn of her rudder was more increased when her rudder was used to large angle than to small angle, but on the other hand in this case her turning ability was slightly reduced. 2. As it appeared that the calculated K'-values of the m.s. 'SAEBADA' were slightly smaller than the standard K'-values of the fishing boats similar in length, and her overshoot angles at her Z test were greater than other general ships, her turning ability was found to t]e slightly lower. 3. When the m. s. 'SAEBADA' took a turn at her $10^{\circ}\;Z$ test, running distance was about 8.6 times her own length and didn't exceed the standard manoeuvrability distance, 5 to 11 times general ships' own length, therefore she was considered to have a good manoeuvrability synthetically.

  • PDF

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

Analysis of the usage Pattern of Tagging in Collaborative Bookmarking (협력적 북마킹의 태킹 행태 분석)

  • Choeh, Joon-Yeon;Kim, Yong-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.193-201
    • /
    • 2009
  • The use of tagging to describes web documents in the form of keyword has experienced rising popularity among various web services. Tagging also plays an important role in collaborative bookmarking services which can be regarded as an online favorite bookmark service. Tags which are created by users make it easier to search other users' bookmarks as well as user's own bookmarks. In this paper we analyze usage patterns of collaborative tagging for exploring factors influencing the number of tags in web documents and users. We discovered that user's characteristics have more effect on the tags than the web documents' characteristics. Moreover, leading users contribute to make a variety of tag than following users. Our study implies that more knowledge can be created through the incentives for leading user in order to improve the service quality of tagging service.

A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure (커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, the synchronous control system is designed to restrain the speed difference generated between two propellers, namely, synchronous error in a dual electric propulsion system of unmanned surface vehicle, fish finder boat, etc. The control system based on coupling structure is composed of pre-filters and speed controllers for each propulsion system and a synchronous controller cross-coupled between two propulsion systems. The pre-filter and speed controller are designed in order that the propulsion system may follow the speed reference without overshoot and input saturation. And the synchronous controller is designed in consideration of damping and quickness of the synchronous controller system after analyzing effect of the skew disturbance and mismatched dynamic characteristics on synchronous error. Finally, the simulation results show that the designed control system is effective for elimination of synchronous error.