• Title/Summary/Keyword: 선굴착

Search Result 147, Processing Time 0.029 seconds

A Study for Predicting Rotational Cutting Torque from Electrical Energy Required for Ground Drilling (지반절삭 전기에너지를 활용한 회전굴착토크 예측에 관한 연구)

  • Choi, Chang-Ho;Cho, Jin-Woo;Lee, Yong-Soo;Chung, Ha-Ik;Park, Yong-Boo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.57-64
    • /
    • 2007
  • This study proposes a method to estimate drilling torque during ground boring with an aid of electrical energy required for rotating a boring-auger. Ground boring is commonly used in geotechnical engineering such as preboring precast pile installation, soil-cement grouting, ground exploration and so forth. In order to understand the correlation between required electrical energy to rotate the boring auger and the drilling torque, a small laboratory apparatus was designed and a pilot study was performed. The apparatus rotates common drill bits of $D=5{\sim}25mm$ in CBR specimens. The velocity of a bit is 19 RPM and predefined using a reduction gear which connects a main rotation axis to a 25 Watts AC electrical motor shaft. In the middle of drilling the motor current increments and the drilling torque were measured and the correlation between the current and the torque was obtained through linear square fits. Based on the correlation the acquired motor current during drilling was applied to predict the drilling torque in consequent testing and the prediction results were compared to the measured torque. The comparison leads a conclusion that the motor current during drilling using electrical power may be a good indicator to estimate/determine strength characteristics of the ground.

A Study on Notch Bit System for Controlling Blast Vibration and Over-break in Rock Mass (발파공해 해소 및 여굴 최소화를 위한 선균열 암굴착 노치장비 개발에 관한 연구)

  • Jeong, Dong-Ho;Moon, Sang-Jo;An, Dae-Jin;Jeong, Won-Joon;Kim, Eun-Kwan;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.216-224
    • /
    • 2007
  • Blasting, using shock and dynamic energy of explosive, is very effective tunnel excavation method. But it had serious problem which is the blast vibration and over-break. In recent study, pre-cracked excavation method using notch hole reduced blast vibration and over-break in tunnel, so we performed study about developing notch bit system for making notch hole. In order to make notch hole effectively we had perform drilling experiments changing length and height of notch and in order to improve speed and precision of drilling we had developed notch bit system which consists of drilling bit, notch bit, adapter and notch guide.

Evaluation of Track Irregularity Effect due to Adjacent Excavation on Serviced Railway Line (철도시설물 인접굴착공사에 따른 운행선 궤도의 궤도틀림 영향 평가)

  • Choi, Jung-Youl;Park, Dong-Ryong;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.401-406
    • /
    • 2019
  • The three-dimensional precision numerical analysis was performed using the finite element model applied with the railway track model consisting of rails, sleepers, and track elastic springs(ballast, rail pad). As a result of analyzing the track deformation level of the existing tracks due to the excavation work adjacent to the railway facilities, it was found that the track irregularity evaluation criteria (allowed values) of both conventional and high-speed railways lines were satisfied. Based on the numerical analysis using the track model, it was analyzed that the results of the prediction of the track irregularity due to the excavation work and the level of the track deformation occurring at the actual site could be approximated as closely as possible.

Evaluation of Track irregularity due to Adjacent Excavation Work on Serviced Urban Transit (도시철도 인접굴착공사에 따른 운행선 궤도의 궤도틀림 분석)

  • Choi, Jung-Youl;Lee, Ho-hyun;Kang, You-Song;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.481-487
    • /
    • 2020
  • In this study, finite element analysis was performed to evaluate the track irregularity of the existing track system on urban transit according to the large-scale excavation work that is constructed adjacent to the serviced line. Based on the numerical analysis, the effect of track irregularity generated during the step-by-step construction process was analytically derived, and the stability in terms of track deformation was evaluated through comparison with related standards. As the results, in the case of track irregularity items evaluated based on the relative displacement difference at a certain distance, such as alignment and vertical irregularity, it occurred most clearly at the location where deformation of the existing structure begins, such as the end point of adjacent excavation work. On the other hand, the overall vertical and horizontal displacement of the track was the largest deformation at the center of the construction section. The vulnerable position of the deformed side of the existing structure due to adjacent excavation is analytically proven that the both of the end point section and the center of the construction can be a vulnerable position in terms of track irregularity.

Rationalization of Gripper TBM Supporting System Pass through Serviced Subway Line (기존 운행선 직하부 통과 굴착에 따른 Gripper TBM 지보패턴 합리화 방안)

  • Hak-Young So;Kook Hwan Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.413-420
    • /
    • 2024
  • When planning gripper TBM, which is highly applicable to urban areas, the excavation characteristics are not considered. In addition the excavation stability and constructability are degraded by installing reinforcements in the adjacent construction site considering the relaxation load theory of the pre-existing NATM. In this study, a rationalization plan for the support was proposed considering the excavation characteristics of gripper TBM when planning reinforcements for adjacent pre-existing construction. The effect of excavation on the surrounding ground was analyzed by conducting three-dimensional stability analyses considering the construction stage for each excavation phase. In NATM, relaxation phenomenon is concentrated in tunnel face due to non-supporting time occurring simultaneously with excavation, but gripper TBM supports the ground around the tunnel face through the cutter head and skin plate, simultaneously causing ground relaxation behind the skin plate. Considering these excavation characteristics, problems in reinforcement planning for adjacent construction at the study site were pointed out. A performance improvement plan for a reasonable supporting system was proposed.

The Improvement of Excavation Efficiency of Roadheader by Using Pre-Cracked Method in High Strength Rock (선균열공법을 활용한 고강도 암반구간 로드헤더 굴진효율 향상방안 연구)

  • Hyung-Ryul Kim;Sang-Jun Jung;Jun-Ho Kang
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.141-149
    • /
    • 2023
  • Recently, as the demand for urban underground space increases, urban tunnel planning is actively progressing. In particular, the application of the roadheader excavation method, which has favorable applicability to urban tunnel, is increasing. However, it is known that the roadheader excavation method has a limitation in that excavation efficiency for high strength rock with a Uniaxial Compressive Strength (UCS) of 100 MPa or more is lowered. In this study, The pre-cracked method was presented as a method to improve the excavation efficiency of roadheader for high strength rock and its applicability was evaluated. The net cutting rate was evaluated using the Bilgin prediction formula, which can calculate the net cutting rate by considering the UCS and RQD (Rock Quality Designation). It was found that the net cutting rate increased as the RQD decreased under the rock condition with the same UCS. This is judged to increase the excavation efficiency of the roadheader in the jointed high strength rock. Additionally, the field applicability of the pre-cracked method for high strength rock was verified through field tests. It was confirmed that the crack zone was formed around the charging hole, and it is considered that the pre-cracked method can be applied to the high strength rock.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.