• Title/Summary/Keyword: 석회 조성물

Search Result 35, Processing Time 0.02 seconds

Hydrogeochemistry of Some Abandoned Metal Mine Creeks in the Hwanggangri Mining District, Korea : A Preliminary Study (황강리 광화대에 분포하는 일부 폐금속 광산수계의 수리지구화학적 특성 : 예비연구)

  • 이현구;이찬희;이종창
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.194-205
    • /
    • 1999
  • Hydrogeochemical variation and environmental isotope at the some abandoned metal mine (Sanggok, Keumsil, Jangpung and Samdeok) creeks of the Hwanggangri mining district were carried out based upon the physicochemical properties for surface water collected of February in 1998. Hydrogeochemical composition of the all water samples are characterized by the relatively significant enrichment of Ca$^{2}$, alkaline ions, N $O_3$$^{-}$ and Cl$^{-}$ in normal surface water, whereas the surface waters near the mining area are relatively enriched in Ca$^{2+$, Mg$^{2+}$, heavy metals. HC $O_3$$^{-}$ and S $O_4$$^{2-}$. Surface waters of the mining creek have low pH, high EC and extremely high concentrations of TDS compared with surface water of the non-mining creeks. The range of $\delta$D and $\delta$$^{18}$O values (SMOW) in the waters are shown in -65.0 to-71.2$\textperthousand$ and -9.1 to-10.2$\textperthousand$. The d($\delta$D-$\delta$$^{18}$O) value with those of water samples ranged from 7.3 to 10.9. These $\delta$D and $\delta$$^{18/}$ of the acid mine water are more heavy values than those of surface water. The values have revealed the positive correlation between isotopic compositions and major elements, because those $\delta$D and $\delta$$^{18}$O values increase with increasing TDS. HC $O_3$$^{-}$ , S $O_4$$^{2-}$ and Ca$^{2+}$ concentration. Using WATEQ4F, saturation index of albite calcite, dolomite and mostly clay minerals in water of the mining area show undersaturated and progressively evolved toward the equilibrium condition due to fresh water mixing, however, surface waters of the non-mining area are nearly saturated and/or supersaturated. Geochemical modeling showed that mostly toxic heavy metals within water in the mining creek may exist largely in the from of metal-sulfate (MS $O_4$$^{2-}$), free metal (M$^{2+}$/), C $O_3$$^{-}$ and/or OH$^{-}$ complex ions. Based on the geology, water chemistry and environmental istopic data the water compositions from the Sanggok and Keumsil mine creek (consist mainly of Cambro-Ordovician carbonate rocks of the Cho-seon Supergroup) show higher PH, Ca$^{2+}$, Mg$^{2+}$ , HC $O_3$$^{-}$ and more heavy $\delta$D and $\delta$$^{18}$O values than those from the Jangpung and Samdeok mine creek (consist of age -unknown metasedimentary rocks of the Ogcheon Supergroup and/or Jurassic grani-toids), but each of these waters represents a similar hydrogeochemical evolution path by the mine water mixing.

  • PDF

Mineralogical Characteristics of the Lower Choseon Supergroup in the Weondong Area (원동지역 하부 조선누층군의 광물학적 특성)

  • Kim, Ha;Sim, Ho;Won, Moosoo;Kim, Myeong-Ji;Lee, Ju-Ho;Song, Yun-Goo
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.349-360
    • /
    • 2016
  • This study determined mineralogical characteristics and discussed the meaning of mineralogical changes of the lower Choseon Supergrouop in the Weondong area based on the field geological investigation and the drilling core description using X-ray diffraction (XRD) mineral quantification and Scanning Electron Microscopy (SEM) observation. 100 samples with depth were collected from the core (250 m long) at a site in the study area. Especially, to investigate the changes from the upper Daegi Formation to the lower Hwajeol Formation, the samples were collected closely with the interval of about 0.3 m at this section. All samples were made into power using mortar for XRD. Mineral quantitative analysis was executed using Relative Intensity Ratio (RIR) method with corundum as an internal standard phase. Calcite, $2M_1$ illite and quartz are main constituents in most of samples. Dolomite and siderite are significantly observed in the Sesong Formation. As the results of quantitative analysis for the major minerals, the upper Daegi Formation is dominated by calcite with over 80%. The Sesong Formation includes high percentage of dolomite and siderite with the intercalation of thin layers containing high calcite and $2M_1$ illite contents. Hwajeol Formation is characterized by the alternation between thin layers of $2M_1$ illite and quartz-dominated layer (IQDL) and calcite-dominated layer (CDL). IQDL is more frequent in the lower part, whereas CDL is more common in the upper part. The boundary between Daegi Formation and the Sesong Formation is distinct, whereas the boundary between the Sesong Formation and the Hwajeol Formation tends to be changed gradually in mineralogy. The result of SEM observation shows that quartz and $2M_1$ illite are detrital, and a significant amount of calcite also shows detrital form with some recrystallized one, indicating that the repeated influx of terrestrial materials had changed the mineralogy of the shallow sea depositional environment in the early Paleozoic era.

Geochemical Study on the Genesis of Chuncheon Nephrite Deposit (춘천 연옥의 기원에 관한 지구화학적 연구)

  • 박계현;노진환
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • To reveal the origin of the Chuncheon nephrite deposit, radiogenic isotopes of Sr and Pb, stable isotopes of 0 and H, and rare earth elements concentrations were analyzed. Such geochemical data were integrated to track the stepwise changes during the various ore formation stages. All the samples from the nephrite deposit have significantly low 0 isotopic ratios compared with the marble from which they had been formed, which reflects the very important role of the crustal circulating water with low 6180 and 6D in every stage of ore formation. There were progressive decrease of 6180 and 6D during the genesis of Chuncheon nephrite deposit. Newly formed minerals during the ore formation reveal disequilibrium with existing minerals in the respect of 0 isotope, which suggests that the ore-forming fluid of circulating water origin was involved with significant water-rock ratios in every step of ore formation process. The ore samples have Sr and Pb isotopic ratios similar to the values of Kyeonggi gneiss complex within which the deposit is located, which also suggests the important role of crustal circulating water in the genesis of the deposit. In conclusion, all the geochemical data support that major portion of the ore-forming fluid of Chuncheon nephrite deposit was derived ultimately from the surface water of meteoric origin. The meteoric water supplied Sr and Pb through leaching the rocks surrounding the ore deposits.

  • PDF

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -III. Soil Mineralogy of Sand and Silt Size Fractions in the Soils (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) -III. 모래와 미사중(微砂中)에 토양광물(土壤鑛物)의 특성비교(特性比較))

  • Um, Myung-Ho;Um, Ki-Tae;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • Sand and silt size fractions of soils which were derived from five major rocks of granite, granite-geniss, limestone, shale, and basalt in Korea were studied. Determination of the mineralogical and chemical composition of rock-forming mineral breakdown which is accompanied by the formation of secondary minerals. The chemical composition of the fraction was largely changed with the content of weatherable and resistant soil minerals such as ferromagenesian minerals, carbonates, and guartz. In the sand fractions of the soils from the granite and granite-gneiss, chlorite-vermiculite mixed layers seem to be an intermediate weathering product prior to the weathering state of the formation of vermiculite from chlorite. Kaolin minerals in the silt fractions of the soils from the granite-gneiss are considered to be formed by the pseudomorphic transformation of plagioclase. In the sand and silt fractions of the soils derived from the limestone, large amount of calcite and dolomite seems to have been inherited from the parent rocks. The primary chloritc, micas, and feldspars are considered to be formed from the weathering remains after leaching of carbonate minerals during the soil formation. In the residual soils(Gueom series) developed from the basalt, quartz and micas were coexisted with plagioclase and augite inherited from the parent rock.

  • PDF

Relationship Between Standardized Precipitation Index and Groundwater Levels: A Proposal for Establishment of Drought Index Wells (표준강수지수와 지하수위의 상관성 평가 및 가뭄관측정 설치 방안 고찰)

  • Kim Gyoo-Bum;Yun Han-Heum;Kim Dae-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.31-42
    • /
    • 2006
  • Drought indices, such as PDSI (palmer Drought Severity Index), SWSI (Surface Water Supply Index) and SPI (Standardized Precipitation Index), have been developed to assess and forecast an intensity of drought. To find the applicability of groundwater level data to a drought assessment, a correlation analysis between SPI and groundwater levels was conducted for each time series at a drought season in 2001. The comparative results between SPI and groundwater levels of shallow wells of three national groundwater monitoring stations, Chungju Gageum, Yangpyung Gaegun, and Yeongju Munjeong, show that these two factors are highly correlated. In case of SPI with a duration of 1 month, cross-correlation coefficients between two factors are 0.843 at Chungju Gageum, 0.825 at Yangpyung Gaegun, and 0.737 at Yeongju Munjeong. The time lag between peak values of two factors is nearly zero in case of SPI with a duration of 1 month, which means that groundwater level fluctuation is similar to SPI values. Moreover, in case of SPI with a duration of 3 month, it is found that groundwater level can be a leading indicator to predict the SPI values I week later. Some of the national groundwater monitoring stations can be designated as DIW (Drought Index Well) based on the detailed survey of site characteristics and also new DIWs need to be drilled to assess and forecast the drought in this country.