• Title/Summary/Keyword: 석회석 자원

Search Result 173, Processing Time 0.024 seconds

Preparation and Characteristics of Soda Lime for Carbon Dioxide Absorption (이산화탄소 흡수를 위한 소다라임 제조 및 특성)

  • Young-Jin Kim;Seok-Je Kwon;Jun-Hyung Seo;Yang-Soo Kim;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.52-58
    • /
    • 2023
  • In this study, soda lime was prepared from slaked lime to expand the scope of limestone use. To evaluate carbon dioxide absorption, an extruder-type and disc-type pelletizers were used to make the soda lime using bentonite as an additive. Regardless of the pelletizing process, the peak of CaCO3 was confirmed in soda lime due to its reaction with carbon dioxide. Furthermore, it was confirmed that both calcite and aragonite were present together. The soda lime prepared using the disc-type pelletizer showed a larger specific surface area than that prepared using the extruder-type pelletizer did, and the specific surface area improved on adding bentonite. The carbon dioxide absorption rate increased under the sample condition with an enhanced specific surface area.

Manufacturing of Lime Materials with High Specific Surface Area for Desulfurization (고비표면적 탈황용 석회소재 제조)

  • Seok-je Kwon;Young-jin Kim;Yang-soo Kim;Jun-hyung Seo;Jin-sang Cho
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2024
  • In an effort to achieve the goal of carbon neutrality, countries around the world are aiming to phase out coal-fired power plants. Due to various reasons, electricity production through coal-fired power generation and sulfur oxide (SOx) emissions are expected to continue in the future. In the South Korea, sodium bicarbonate (NaHCO3) and lime materials are used to treat SOx, and most of the sodium bicarbonate is imported. Therefore, this research was conducted to replace sodium bicarbonate by improving the physical properties of lime materials using domestic limestone. Limestone was heat-treated through a box-type electric furnace and a vertical electric furnace. Due to the structural characteristics of the vertical electric furnace, a lime material(quicklime) was possible to improve the physical properties like a specific surface area and a pore volume. Then, they were reached to 22.33 m2/g specific area and 0.14 cc/g pore volume.

A Study on the Economical Design of Bench Blasting in Lime Stone Quarry (석회석광산에서의 경제적인 벤치발파패턴에 대한 연구)

  • 이천식;정민수;이윤재;송영석;양난주;강대우
    • Explosives and Blasting
    • /
    • v.21 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • 국내 석회석 광산에서는 벤치 발파패턴을 현장의 KNOW-HOW에 따라 가장 경제저인 발파패턴을 적용하고 있다. 그러나 인건비 재료비등 제반경비가 상승함에 따라 좀 더 효율적인 발파방법의 개선이 요구되고 있는 바, 현 석회석 광산에서의 발파패턴을 보다 개선하여 경제적인 발파패턴을 적용하고, 그에 따른 고려해야 할 사항들을 본 논문에서 연구 하고자 한다. 따라서 국내 석회석 광산의 발파 패턴과 외국의 광산발파 패턴을 비교하고, 수치해석을 적용하여 기존의 발파 패턴에서 장약길이, 공간격, 장약량의 변화, 천공경은 102mm에서 115mm로 변화하고 장양방법을 단일장약에서 이중장약으로 변화하여 동해 쌍용자원에서 시험을 실시하였다. 연구 결과 장약길이의 20% 감소는 Power Factor를 (20%)낮게 하나, 파쇄효과는 28% 감소하고 Back Break가 (7%)이상 발생하였으며, 천공경을 115mm로 적용하고, 장약길이를 11% 감소를 위하여 이중장약을 적용하여 Power Factor를 10% 낮게 하였을 때 파쇄효과는 22.45%가 증대되었으며, 기존 동일 패턴에 Booster를 추가로 적용하였을 때 파쇄효과는 13.21% 가 증대되었고, Power Factor는 11% 가 감소되는 것을 알 수 있었다.

Evaluation and application of grinding index of domestic desulfurization limestone (국내 탈황용 석회석의 분쇄성 지수 평가 및 응용)

  • Seo, Jun Hyung;Baek, Chul Seoung;Cho, Jin Sang;Ahn, Young Jun;Ahn, Ji Whan;Cho, Kye Hong
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In the flue gas desulfurization process of the coal-fired power plant, the grinding efficiencies of the limestone as the sorbent for desulfurization were compared after BWI and HGI measurements. As a result, the grinding index of the domestic desulfurization limestone were linear inversely proportional relationship with decreasing BWI was observed with increasing HGI. There was a difference in grinding efficiency depending on the chemical composition and crystal structure. Therefore, it is considered that when grinding ability of limestone is measured, the grinding property of the sample can be confirmed even by using HGI which can be measured more easily than BWI which is difficult to measure and takes a long time. The desulfurization efficiency can be improved by selective utilization of limestone depending on the crushing characteristics.

Effect of Low-grade Limestone on Raw Mill Grinding and Cement Clinker Sintering (저품위 석회석이 원료밀의 분쇄성과 시멘트 클링커 소성성에 미치는 영향)

  • Yoo, Dong-Woo;Park, Tae-Gyun;Choi, Sang-Min;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.20-25
    • /
    • 2021
  • The cement clinker, the main raw material of cement, is manufactured using limestone as the main material. Depending on the quality of limestone, the use of subsidiary materials changes, and has a great influence on the production of cement clinkers. In this study, the effect of CaO content of limestone, a cement clinker material, on Raw Mill grinding and sintering of cement clinker was investigated. The grinding time of the union materials changed in the content of limestone CaO was measured to identify the grinding properties. The raw material combination was cleaned within a range of 1,350-1,500℃. The sintering performance of cement clinker by Burnability index calculation was identified. The lower the grade of limestone, the lower the grinding quality of the raw material combination. The lower the CaO content of limestone, the greater the variation in F-CaO for sintering temperature. The lower the class of limestone, the higher B. I. value was calculated, indicating the lower cement clinker sintering. In addition, the mineral analysis results of cement clinker showed that if the F-CaO value was low due to the increase in sintering temperature, the Belite content decreased and the Alite content increased. In the case of Alite, the ratio of R-type decreased and that of M-type increased as the content of limestone CaO increased.

Consideration of Cement Mineral Production Amount and Microstructure Chemical Distribution of Cement Clinker Using Coal Ash and Coarse Limestone (석탄재와 조립 석회석을 적용한 시멘트 클링커의 시멘트 광물생성량과 미세구조의 화학성분 분포 고찰)

  • Dong-Woo Yoo;Sung-Ku Kwon;Min-Seok Oh;Seok-Je Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.364-372
    • /
    • 2023
  • By applying coarse-grained limestone and unprocessed coal ash as sintering raw materials for cement clinker, the microstructure and distribution of chemical components of cement clinker were compared and examined. Samples using coarse limestone as a raw material for cement clinker showed a decrease in sinterability compared to samples using reagent-grade raw materials. Samples using coal ash showed a tendency for some increase in sinterability. In samples using coarse limestone and coal ash, the formation of Belite was high at 1350 ℃. The conversion rate from Belite to Alite was high in the range of 1350~1450 ℃. Samples using coal ash showed stable formation of interstitial phase in the range of 1350 to 1450 ℃. The microstructure and chemical composition distribution of cement clinker sintered at 1350~1450 ℃ showed that all samples showed a form and composition distribution in which the calcium silicate phase and interstitial phase were clearly distinguished.

The Gravity Separation of Speiss and Limestone Granules Using Vibrating Zirconia Ball Bed (지르코니아볼층 진동을 이용한 스파이스와 석회석 입자의 비중선별)

  • Yoo, Jae Kyoung;Lee, Minji;Kim, Gyeong Hwan;Yoo, Kyoungkeun
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.36-42
    • /
    • 2020
  • In the present study, gravity separation of speiss (6.74 g/㎤) and limestone (2.7 g/㎤) was investigated using a vibrating 1 mm-zirconia ball (5.6 g/㎤) bed as a medium. The floating ratio and separation efficiency with increasing the number of spiess and limestone granules were examined by changing the vibration frequency from 18 Hz to 26 Hz. During the vibration, the zirconia balls circulate inside the vessel, and the spiess granules sink with the zirconia balls, but limestone granules remain on the surface of the zirconia ball bed. As the number of particles of spiess and limestone granules increased, it was observed that the granules were congested in the path of the granule sinking, so the rate of particle sinking decreased, and that limestone granules overlapping with the spiess granule also sunk. Therefore, the separation efficiency decreases with increasing the number of granules, but when the vibrational frequency increases, there is no more congestion and the separation efficiency increases. When each of the three particles was added, a separation efficiency of 100% was acheived at 22 Hz, which indicates that a dry gravity separation process that does not require a drying process is possible.