• Title/Summary/Keyword: 석회석광산

Search Result 176, Processing Time 0.024 seconds

Field Experiment on Iron and Aluminum Removal from Acid Mine Drainage Using an Apatite Drain System (인회석 배수시스템을 이용한 산성수의 철 및 알루미늄 제거에 대한 현장경험)

  • Choi, Jung-Chan;West, Terry R.
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.315-323
    • /
    • 1996
  • An apatite drain was constructed on September 30, 1994 at the Green Valley Abandoned Coal Mine site near Terre Haute in west central Indiana. The primary objective of this experiment is to evaluate the long-term ability of the apatite drain to mitigate acid mine drainage (AMD) under field conditions. The drain 9 m long, 3.3 m wide, and 0.75 m deep, contain 95 rum to No. 30 mesh-size apatite ore (francolite) and receive AMD seepage from reclaimed gob piles, and designed according to the laboratory testing. The apatite drain was covered with limestone riprap and filter fabric to protect the drainage system from stormwater and siltation. The drain consists of about 50 metric tons of apatite ore obtained from a phosphate mine in Florida. A gabion structure was constructed downstream of the apatite drain to create a settling pond to collect precipitates. Apatite effectively removed iron up to 4,200 mg/l, aluminum up to 830 mg/l and sulfate up to 13,430 mg/l. The pH was nearly constant for the influent and effluent, ranging between 3.1 and 4.3. Flow rate measured at the gabion structure ranged from 3 to 4.5 l/m. Precipitates of iron and aluminum phosphate (yellow and white suspendid solids) continued to accumulate in the settling pond.

  • PDF

Changes in Phytoavailability of Heavy Metals by Application of Limestone in the Farmland Soil nearby Abandoned Metal Mine and the Accumulation of Heavy Metals in Crops (폐금속 광산 주변 농경지 토양에서 석회석 처리에 의한 중금속의 식물유효도 변화 및 작물의 중금속 축적)

  • Yun, Sung-Wook;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • As topographic characteristics of Korea where 64 % of the national land area is forest and only 17 % is being used as farmland, remediation of farmland contaminated by heavy metals is a considerably important issue. In this study, as an alternative of practically and effectively remediating farmland which was abandoned as its crop plants exceeded maximum residue limit of heavy metals due to mining impact, applicability of stabilization method was examined through the pilot-scale field experiment. Three plots ($L{\times}W{\times}D=3m{\times}2m{\times}0.3m$) were installed at the selected farmland and in plot 1, only soil of the selected farmland was applied, in pilot 2, soil of the selected farmland plus 3 % limestone (w/w) was applied and in pilot 3, soil of the selected farmland plus 3 % limestone was applied and then uncontaminated soil was covered thereon (0.3 m). After that, seeds of radish, Korean cabbage and soybean of which characteristics of edible portions are different were sowed on each plot and cultivated. Afterwards, at a proper harvesting time (app. 80 days later), crop plants and soil were collected and phytoavailability (0.11 M HOAc extractable) of heavy metals in soil and accumulated concentration of heavy metal in edible portion of crop plants were examined. As a result, it was revealed that phytoavailability of heavy metals in soil added with limestone (plot 2) was clearly reduced compared with plot 1 (untreated) and owing to this treatment, accumulated concentration of heavy metals in edible portion of crops was also clearly reduced compared with plot 1. While radish cultivated in plot 1 had exceeded maximum residue limit of agricultural products, in particular, plot 2 using limestone had shown concentration lower than maximum residue limit and this plot had shown little difference with 3 plot where crop was cultivated in uncontaminated soil cover. Therefore, it was considered that for abandoned farmland like the selected farmland, reducing mobility and phytoavailability of heavy metals and reducing crop uptake through stabilization method would be an effective and practical alternative for producing safe agricultural products on a sustained basis.

A Case Study on the Construction at Near Verge Section of Secure Objects Using Electronic Detonators (전자뇌관을 이용한 보안물건 초근접구간 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hee;Lim, Il-soo;Kim, Jin-soo
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.22-30
    • /
    • 2019
  • On sites where explosives are used, the effects of noise and vibration produced by the blast wave are subject to a number of operational restrictions. Recently, the number of civil complaints has increased and the standard of environmental regulations on secure goods has been greatly tighten. Therefore, work is generally carried out by machine excavation in case of close proximity of safety thing. Machine excavation methods have the advantage as reducing noise and vibration compared to blasting methods, but depending on the conditions of rock intended to be excavated, they are sometimes less constructive than planned. In general, the closer a rock type is to hard rock, the less constructible it becomes. In this paper, we are going to explain the construction of a construction section with a close proximity to a safety thing using electronic detonators. While the project site was designed with a machine excavation methods due to the close(9.9m) proximity of safety thing(the railroad), construction using electronic detonators was reviewed as an alternative method for improving rate of advance time and construction efficiency when expose to hard rock. Through blasting using electronic detonators, construction and economic efficiency were maximized while minimizing impact on surrounding safety things. Because $HiTRONIC^{TM}$, which is produced by Hanwha, has innovative stability and high explosion reliability, it is able to explode with high-precision accuracy. Electronic detonators are widely used in construction sites of railway or highway, other urban burrowing areas and large limestone mines.

The Results of Drilling in Weondong Mine Area, the Taebaegsan Mineralized District, Republic of Korea (강원도 태백산지역 원동광산 시추탐사연구)

  • Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • The Taebaegsan Mineralized District is the most prospective region for the useful mineral commodities such as a coal, non-metallic, metallic mineral in South Korea. From a general point of view, Cambro- Ordovician limestone formations, Myobong slate and Pungchon (Daegi) limestone, are the most fertilizable formations in the Taebaegsan Mineralized District. The geology around Weondong mine area consists mainly of Carboniferous-Triassic formations and Cambro-Ordovician formations intruded by rhyolite/quartz porphyry. The great overthrusted fault of N40~$50^{\circ}E$ direction, so called Weondong overthrust fault, is observed in the central part of the mine area and the NS fault system cuts the overthrusted fault. By postulating from the favorable geological and structural condition around Weondong area, the possibility of deep seated hidden ore bodies is expected. In 2010, on the basis of the results of LOTEM and CSAMT survey, the cross-hole survey was performed for the investigation of the hidden polymetallic ore body in the deep parts of the Weondong mine area and the grade of the newly-discovered orebody is as follows; (1) The cut-off grade for lead-zinc 3%; an weighted average grade 5.50% (2.7 m), (2) The cutoff grade for copper 0.1%; an weighted average grade 0.91% (14.65 m), (3) The cut-off grade for iron 30%; an weighted average grade 38.18% (3.3 m), (4) $WO_3$ for each cut-off grade(0.01%, 0.05%, 0.1%); an weighted average grade 0.29 wt. % (8.8 m), 1.15 wt. % (2.1 m), 1.97 wt. % (1.2 m), (5) $MoS_2$ for each cut-off grade(0.01%, 0.1%); an weighted average grade 0.15 wt. % (6.3S m), 0.28 wt. % (3.15 m), (6) $Ta_2O_5$ for each cut-off grade (0.01%, 0.1%); an weighted average grade 0.13% (19.S m), 1.11% (1.8 m), (7) $Nb_2O_5$ for each cut-offgrade (0.01%, 0.1%); an weighted average grade 0.06% 11.5 m), 0.15% (3.0 m).

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

Relationships between Micronutrient Contents in Soils and Crops of Plastic Film House (시설재배 토양과 작물 잎 중의 미량원소 함량 관계)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.217-227
    • /
    • 2006
  • Micronutrient status in soils and crops of plastic film house and their relationship were investigated. Total 203 plastic film houses were selected (red pepper, 66; cucumber, 63; tomato, 74) in Yeongnam region and soil and leaf samples were collected. Hot-water extractable B and 0.1 N HCl extractable Cu, Zn, Fe, and Mn in soil samples and total micronutrients in leaf samples were analyzed. Contents Zn, Fe, and Mn in most of the investigated soils were higher than the upper limits of optimum level for general crop cultivation. Contents of Cu in most soils of cucumber and tomato cultivation were higher than the upper limit of optimum level, but Cu contents in about 30% of red pepper cultivation soils were below the sufficient level. Contents of B in most soils of cucumber and tomato were above the sufficient level but in 48% of red pepper cultivation soils B were found to be deficient. Micronutrient contents in leaf of investigated crops were much variable. Contents of B, Fe, and Mn were mostly within the sufficient levels, while in 71% of red pepper samples Cu was under deficient level and in 44% of cucumber samples Cu contents were higher than the upper limit of sufficient level. Contents of Zn in red pepper and cucumber samples were mostly within the sufficient level but in 62% of tomato samples Zn contents were under deficient condition. However, any visible deficiency or toxicity symptoms of micronutrients were not found in the crops. No consistent relationships were found between micronutrient contents in soil and leaf, and this indicates that growth and absorption activity of root and interactions among the nutrients in soil might be important factors in overall micronutrient uptake of crops. For best management of micronutrients in plastic film house, much attention should be focused on the management of soil and plant characteristics which control the micronutrient uptake of crops.