• Title/Summary/Keyword: 석유회수증진기술

Search Result 7, Processing Time 0.027 seconds

Review of EOR Market and Technical Development Trends (석유회수증진기술의 시장 및 개발기술 동향)

  • Kim, Hyun-Tae;Lee, Kun-Sang;Son, Han-Am;Yoo, In-Hang
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.59-68
    • /
    • 2012
  • With the decline in discoveries of new oil fields and increasing demand from developing countries it is believed that enhanced oil recovery (EOR) technologies will play a key role to meet the energy demand in years to come. Based on the recently-published data, this paper discusses current status of global EOR market and technical development trends. The EOR market includes oil produced through various EOR recovery methods, such as thermal recovery, gas injection, chemical injection. Also, EOR methods are addressed screening criteria by reservoir and fluid characteristics including lithology, depth, thickness, and oil properties such as composition and gravity. Finally, the examples of field applied by various EOR methods are discussed with respect to reservoir characteristics and performance.

Recent Trends and Prospects of Chemical Enhanced Oil Recovery (석유회수증진을 위한 화학적 공법 연구 동향 및 전망)

  • Choi, Youngil;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.660-669
    • /
    • 2018
  • Enhanced oil recovery (EOR) is a method used to improve the recovery factor of remaining hydrocarbon in reservoir. Polymer and surfactant EOR techniques have limitations depending on reservoir or production conditions (temperature, salinity, etc.) because the polymer and surfactant are highly affected by the reservoir conditions. In this study, analysis of the current improvements to chemical substances and application technologies was performed based on recent research data. Conventional polymer is readily degraded by the conditions of high temperature and high salinity. Therefore, new polymers and injection techniques have been developed to remediate such problems. In addition, surfactant applicable to shale and carbonate reservoirs is developed as petroleum recovery expands to unconventional reservoirs. However, these chemical substances are not widely used in the current oil fields due to high costs. Therefore, further studies must be conducted to reduce the cost and thus increase the effectiveness of EOR techniques.

Reviews on Gas Separation Membrane Process (분리막공정을 이용한 기체분리의 정상적 고찰)

  • 박영규;이영무
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.59-71
    • /
    • 1996
  • 기체 막분리공정 기술이 점점 개발되어질수록 막분리의 성능을 이해하려는 필요성이 각 공정에서 증진될 것이며 기체 막분리 성능의 예측능 기술 발전을 위해 계속 시도되어질 것이다. 이러한 추세에 힘입어 현재 석유화학공정 배가스 중 수소를 정제하기 위한 기술 개발을 시도하고 있으며 특히 저농도의 수소를 고농도로 농축시키기 위해 막분리 공정을 적극 검토하고 있다. 본 논문에서 밝혀 본 막분리 공정의 성능 예측과 분석은 향후 공정을 설계하고 제작하는 데 크게 이바지할 뿐만 아니라 석유화학 제반 공정뿐만 아니라 관련 화학공업장치 산업에서 기체 분리를 통한 자원회수와 에너지 절약 측면에서 계속 발전해 나갈 것은 믿어 의심치 않을 것이다.

  • PDF

Brief Review on Microbial Enhanced Oil Recovery (미생물을 이용한 원유 회수증진법에 대한 동향연구)

  • Oh, Kyeongseok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1010-1019
    • /
    • 2021
  • Petroleum oil in reservoir has been acquired by primary, secondary and tertiary oil recoveries. Microbial enhanced oil recovery (MEOR) classified to tertiary oil recovery has been evaluated in two ways of in-situ and ex-situ options. In-situ MEOR injects microbes into a depleted oil reservoir and stimulates those to generate metabolites. Among metabolites, biosurfactants play an important role to make heavy residues flow. Ex-situ MEOR injects microbial metabolites instead of microbes into a reservoir to recover oil. Even though both in-situ MEOR and ex-situ MEOR are eco-friend processes, in-situ MEOR can be preferred because it is more economic. Even though MEOR have been evaluated for a long time, it is still in the state of evaluating in a pilot-scale. Among microbes, bacteria have been widely evaluated in MEOR purpose. In this paper, bacteria for MEOR were summarized and their metabolites were qualitatively evaluated.

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases (CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석)

  • Park Hyeri;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.59-71
    • /
    • 2023
  • Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

Case Study on Induced Seismicity during the Injection of Fluid Related to Energy Development Technologies (에너지개발기술에 있어 유체주입에 따른 유발지진 발생 사례분석)

  • Lee, Chung-In;Min, Ki-Bok;Kim, Kwang-Il
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.418-429
    • /
    • 2014
  • Induced seismicity related to four energy development technologies that involve fluid injection or withdrawal: geothermal energy, conventional oil and gas development including enhanced oil recovery (EOR), shale gas recovery, and carbon capture and storage (CCS) is reviewed by literature investigation. The largest induced seismic events reported in the technical literature are associated with projects that did not balance the large volume of fluids injected into, or extracted from the underground reservoir. A statistical observation shows that the net volume of fluid injected and/or extracted may serve as a proxy for changes in subsurface stress conditions and pore pressure, and other factors. Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and the amount of fluid being withdrawn, such as geothermal and most oil and gas development, may produce fewer induced seismic events than technologies that do not maintain fluid balance, such as long-term wastewater disposal wells and CCS projects.