• 제목/요약/키워드: 석유계 탄화수소

검색결과 55건 처리시간 0.025초

토양내 중금속 및 유류 오염농도 저감을 위한 생화학적 기작의 효율성 평가 (Assessment of Biochemical Efficiency for the Reduction of Heavy Metal and Oil Contaminants in Contaminated Soils)

  • 김만일;정교철;김을영
    • 지질공학
    • /
    • 제22권3호
    • /
    • pp.253-262
    • /
    • 2012
  • 중금속 및 유류 오염토양 정화를 위해 효율적인 토양세척법과 공정 선정을 목적으로 최적의 오염정화 설계인자를 제시하기 위한 실험적 연구를 수행하였다. 실험 분석항목은 구리, 납, 아연을 포함하는 중금속 항목과 총석유계탄화수소(TPH)인 유류 항목에 대해 흡광광도법(absorptiometric analysis), 기체크로마토그래피(gas chromatography)법을 이용하여 단계별로 분석하였다. 실험방법은 최적 세척용매(washing solution) 결정시험, 최적 세척시간(washing time) 도출시험, 최적 진탕비(dilution ratio) 결정시험 등을 통해 얻어진 결과를 토대로 계면활성제(surfactant) 첨가량별 중금속 용출영향 분석시험, 미생물 및 과산화수소 주입시험 순으로 실시하였다. 실험결과에서 세척용매인 염산 0.1 mole, 체류시간 1시간, 진탕비 1 : 3 조건에서 오염물질의 저감효과가 우수하게 나타났으며, 이들 조건을 적용하였을 때 1%의 계면활성제를 세척 용매에 첨가하였을 경우 추가적인 오염물질의 농도저감 효과를 보이는 것으로 확인되었다. 또한 미생물과 과산화수소 주입에 따른 추가적인 TPH 농도 저감이 있는 것으로 파악되었다.

공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성 (TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging)

  • 이준호;박갑성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권6호
    • /
    • pp.18-27
    • /
    • 2006
  • 공기분사공정법은 포화대수층에 존재하는 유기화합오염물질들을 대기로부터 주입된 공기에 의해 불포화층으로 휘발시켜 제거하는 기술을 말한다. 이 연구의 목적은 TPH 10,000 mg/kg(액상 TPH 1,001 mg/L)으로 오염시킨 사질 포화대수층에 공기를 주입 하였을 때 불포화 토양층, 대기층에서 발생되는 이산화탄소, 휘발성유기화합물의 농도와 포화대수층(TPH) 농도 변화에 관한 특성 연구이다. 36일 동안 공기를 주입한 결과, 실험 반응조의 평형온도는 $24.9{\pm}1.5^{\circ}C$이었다. 포화대수층(공기 확산기 근처 C10 지점)에 녹아있는 TPH 농도는 초기주입 농도의 66.0%가 제거되었다. 대기중(C70 지점)에서 측정된 $CO_2$ 질량은 3,800 mg이였고 불포화 토양층(C50 지점)에서 측정된 $CO_2$의 질량은 3,200 mg이였다. 대기중(C70 지점) 및 불포화 토양층(C50 지점)에서 생성된 VOCs 속도상수는 각각 0.164/day, 0.187/day이였다.

토양세척 공정의 환경영향 분석 - 이산화탄소 배출량 및 에너지 사용량을 중심으로 (Environmental Impact of Soil Washing Process Based on the CO2 Emissions and Energy Consumption)

  • 김도형;황보람;허남국;정상조;백기태
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.119-125
    • /
    • 2014
  • 총 석유계탄화수소로 오염된 토양을 정화하기 위한 토양세척공정을 부지 내 및 부지 밖 처리로 구분하여 공정 중 발생하는 환경적인 영향을 녹색 및 지속 가능한 정화 평가모델을 사용하여 평가하였다. 각 단계 별 환경부하의 상대적인 기여도를 평가하기 위해 전체 토양세척공정을 부지조성(1단계), 굴착(2단계), 물리적 선별 및 세척(3단계), 폐수처리(4단계)의 주요한 4단계로 구분하였다. 부지 내 처리 시에는 1단계에서 $CO_2$ 배출량과 에너지사용량의 상대적인 기여도가 각각 87.1%와 80.4%였고, 부지 밖 처리시에는 2단계에서 $CO_2$ 배출량과 에너지사용량의 상대적인 기여도가 각각 82.7%와 80.5%였다. 결론적으로 토양세척공정에서 부지 내 처리의 경우 1단계에서의 세척장치 제작을 위한 철, 스테인리스스틸 등 소비성 재료의 사용이, 부지 밖 처리의 경우 2단계에서의 굴착된 오염토의 운송을 위한 연료의 소비가 환경부하에 영향을 끼치는 가장 중요한 요소이다. 본 연구의 결과는 토양세척 공정의 적용 시 녹색 및 지속 가능한 정화의 달성을 위한 유용한 정보가 될 것으로 기대된다.

펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리 (Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes)

  • 배재상;김종향;최정혜;칼루 이베 엑페게어;김수곤;고성철
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.356-363
    • /
    • 2011
  • 유류의 유출로 인한 총석유계탄화수소(total petroleum hydrocarbons: TPH)는 종종 토양과 지하수의 오염을 초래하고 있다. TPH는 환경에 노출이 될 경우 물리화학적 과정을 거쳐 분해가 되나 그 반응은 상대적으로 느리다. 본 연구에서는 TPH로 오염된 토양의 환경친화적인 처리기법을 궁극적으로 개발하기 위해서 화학적 및 생물학적 통합기술을 도입하고자 시도하였다. 여기서 펜톤유사반응을 전처리단계로 도입하고 이후 디젤분해 혼합균을 처리하여(생물증강법) 오염유류를 처리하고자 하였다. 계면활성제 OP-10S (0.05%)과 산화제($FeSO_4$ 4%, 및 $H_2O_2$ 5%)를 사용할 경우 토양으로부터 효율적으로 TPH를 처리, 제거할 수 있는 것으로 나타났다. 디젤분해 혼합균을 토양슬러리에 접종할 경우 100배 이상 분해균의 밀도상승이 관찰되었는데 이는 접종된 분해균이 오염된 토양에서 성공적으로 존재할 수 있음을 의미한다($10^8-10^9$ CFU/g slurry). Fenton으로 처리된 토양에서의 TPH 제거 효율은 분해균으로 생물증강을 실시할 경우 최소한 57% 정도 상승되는 것으로 나타났다. 그러나 화학적, 생물학적 연속처리를 실시할 경우 대조구(무처리; 재거효율 95%)에 비해 상대적으로 낮은 처리효율(79-83%)을 나타내었는데, 이는 화학처리 중에 발생하는 자유기(free radicals) 함유 산화물질이 분해를 억제한 것에 기인하는 것으로 보인다. 본 연구에서의 얻어진 결과는 환경에 있어서 TPH로 오염된 토양과 저질을 효율적으로 정화하고 토양생태계의 신속한 회복에 활용할 수 있을 것으로 판단된다.

고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향 (Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process)

  • 박기호;신항식;박민호;홍승모;고석오
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권4호
    • /
    • pp.45-53
    • /
    • 2005
  • 본 연구의 목적은 실제 디젤유로 오염된 불포화 토양을 복원하기 위해 수행되었던 고온공기 주입 파일롯 테스트에서 토양온도 변화가 생분해 속도에 미치는 영향을 알아보고자 히는 것이었고, 이것을 토대로 현장 생분해 속도, 최적의 생분해 온도 및 1차 분해 속도 상수를 도출하고 총복원기간을 예측해 보았다. 실험은 과거 디젤유 누출 사고가 있었던 고농도 오염지역에 대해 토양의 온도별 현장 호흡률(in-situ respiration)을 약 10일 간격으로 측정하는 식으로 진행되었다. 적용된 복원공법은 고온공기를 주입/추출하여 1차적으로 오염된 디젤 성분을 휘발, 추출하고 이어서 토양의 잔열과 미생물 생분해를 이용하여 토양내 잔류 디젤을 제거하는 후속공정으로 이루어졌다. 토양온도 $26\sim60^{\circ}C$ 범위에서 산소소비속도는 $2.2\sim46.3%/day$ 값을 보였고 $32^{\circ}C$에서 가장 빠른 46.3%/day를 나타냈다. 산소소비속도를 기준으로 하여 계산한 0차반응 생분해 속도(biodegradation rate)는 $6.5\sim21.3mg/kg-day$ 이었고 역시 토양온도 $ 32^{\circ}C$ 에서 최대값을 보였고 그 이전과 이후는 각각 감소된 값을 나타냈다. 주기적으로 측정된 현장호흡률을 바탕으로 계산한 1차 분해속도 k는 몇가지 온도 범위에서 즉, $0.0027\;d^{-1}(@32.8^{\circ}C),\;0.0013\;d^{-1}(@41.1^{\circ}C)$ 그리고 $0.0006\;d^{-1}(@52.7^{\circ}C)$ 이었다. 토양의 초기 TPH 농도 대비목표 농도를 870 mg/kg으로 가정했을 경우 소요 복원기간은 $2\mu9$년 정도 소요되는 것으로 예측되었다.