• Title/Summary/Keyword: 석션 매입 앵커

Search Result 4, Processing Time 0.02 seconds

Study on Pullout Behavior of Embedded Suction Anchors in Sand using ALE (Arbitrary Lagrangian Eulerian) Technique (ALE 기법을 이용한 모래지반에서 석션 매입 앵커의 인발 거동 분석)

  • Na, Seon Hong;Jang, In Sung;Kwon, O Soon;Lee, Seung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2014
  • The embedded suction anchor, ESA, is one type of mooring anchor systems which utilizes the suction pile or caisson to penetrate the anchor into the sea bed and develops its capacity under pullout load. In this study, the numerical analysis using ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to simulate the pullout behavior of the ESA, and the results were compared to those of the previous research, centrifuge model tests and the analytical method based on limit equilibrium theory. The pullout behaviors of the ESA under horizontal, vertical, and inclined loading were evaluated. The analysis results showed that the maximum horizontal pullout load was developed when the location of loading point was at the mid-point, and the each vertical pullout load gave the similar value regardless of the locations of the loading points. The pullout load decreased as the load inclination angle increased at the mid-point of the anchor.

Analytical Parametric Study on Pullout Capacity of Embedded Suction Anchors (매입된 석션앵커의 인발력에 대한 분석적 매개변수의 연구)

  • Boonyong, Sorrawas;Park, Ki Chul;Kim, In Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.182-189
    • /
    • 2015
  • The Embedded Suction Anchor (ESA) is a type of permanent offshore foundation that is installed by a suction pile. To increase the loading capacity against pullout, three wings (vertical flanges) are attached along the circumference at 120 degrees apart. Analytical parametric study using the proposed analytical solution method has been conducted to identify the effects of several parameters that are thought to influence the behavior of ESAs. The analysis results show that the pullout capacity increases as the anchor depth and the soil strength increase, and decreases as the load inclination angle increases. The anchor having square projectional area and being pulled horizontally at the middle of its length provides the highest pullout capacity.

Evaluation of Pullout Capacity of Embedded Suction Anchors in Uniform Clay using Numerical Analysis with ALE(Arbitrary Lagrangian Eulerian) Technique (ALE 기법이 적용된 수치해석을 통한 점토지반에서 석션 매입 앵커의 인발 저항력 평가)

  • Na, SeonHong;Jang, In-Sung;Kwon, OSoon;Lee, Seung-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2428-2435
    • /
    • 2014
  • Numerical analysis with ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to evaluate the pullout capacity of the embedded suction anchors (ESA) in uniform clay. The numerical method was verified by the previous study, analytical results based on limit-equilibrium theory and centrifuge tests. The pullout capacity of the ESA under horizontal, vertical, and inclined loading were evaluated, and the effect of initial rotation of the ESA on pullout capacity was also investigated. The analysis results showed that the maximum horizontal capacity was obtained at the mid-point, and the each vertical capacity gave the similar value regardless of the loading points. Furthermore, the inclined capacity was decreased as the load inclination angle increased at the mid-point of the anchor, and almost the same pullout capacity was obtained when the initial rotation angles were below 30 degrees.

Centrifuge Model Tests on the Pullout Capacity of Embedded Suction Anchor without Flanges in Sand layer (모래지반에 매입된 날개없는 석션앵커의 인발력에 대한 원심모형실험)

  • Kim, Kyoung-O;Kim, You-Seok;Ko, Boo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.517-520
    • /
    • 2005
  • The embedded suction anchor(ESA) is and anchor that is driven by a suction pile. The cross-sectional shape of the ESA anchor is circle. Its diameter is the same as that of the suction pile that is used to drive it into the seafloor. For the installation, the anchor is attached to the tip of the suction pile and then driven as a unit with the pile by and applied suction pressure. Once the ESA anchor reaches the desired depth, the pile is retrieved by applying a positive pressure. Finally, only the ESA anchor remains in the soil layer. This paper presents the results of centrifuge model tests to investigate ESA pullout capacity. The main parameters that have effects on the pullout capacity of ESA may include g-level, embedded depth, direction of loading, and loading point. The results of tests show that the pullout loading capacities increase as the loading point shift toward the tip of the anchors for a given loading direction. They also indicate that the loading point associated with the maximum pullout loading capacity is located at approximately 67 percent of the anchor length from the top for the horizontal load.

  • PDF