• Title/Summary/Keyword: 석면 분석

Search Result 84, Processing Time 0.024 seconds

Inactivation of Asbestos-Containing Slate Using High-Temperature Plasma Reactor (플라즈마 고온반응기를 이용한 폐슬레이트 비활성화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Son, Byungkoo;Kim, Taewook;Mun, Youngbum;Lee, Sundong;Lee, Jaeyun;Roh, Yul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.407-417
    • /
    • 2020
  • The capacity of the designated landfill site for asbestos-containing waste is approaching its limit because the amount of asbestos-containing slate is increasing every year. There is a need for a method that can safely and inexpensively treat asbestos-containing slate in large capacity and at the same time recycle it. A cement kiln can be an alternative for heat treatment of asbestos-containing slate. We intend to develop a pilot scale device that can simulate the high temperature environment of a cement kiln using a high temperature plasma reactor in this study. In addition, this reactor can be used to inactivate asbestos in the slate and to synthesize one of the minerals of cement, to confirm the possibility of recycling as a cement raw material. The high-temperature plasma reactor as a pilot scale experimental apparatus was manufactured by downsizing to 1/50 the size of an actual cement kiln. The experimental conditions for the deactivation test of the asbestos-containing slate are the same as the firing time of the cement kiln, increasing the temperature to 200-2,000℃ at 100℃ intervals for 20 minutes. XRD, PLM, and TEM-EDS analyses were used to characterize mineralogical characteristics of the slate before and after treatment. It was confirmed that chrysotile [Mg3Si2O5(OH)4] and calcite (CaCO3) in the slate was transformed into forsterite (Mg2SiO4) and calcium silicate (Ca2SiO4), a cement constituent mineral, at 1,500℃ or higher. Therefore, this study may be suggested the economically and safely inactivating large capacity asbestos-containing slate using a cement kiln and the inactivated slate via heat treatment can be recycled as a cement raw material.

공기중 석면 및 기타 섬유분진 분석에서의 분석자 개인 변이

  • Kim, Gang-Yun;Kim, Eun-Seon;Kim, Seok-Won
    • 월간산업보건
    • /
    • s.130
    • /
    • pp.36-41
    • /
    • 1999
  • 본 분석기법을 소개하고자 하는 목적은 유해인자별 작업환경 측정 및 특수건강진단 시료 분석에 맞는 구체적인 분석결과를 제시함으로써 산업보건관련 유관기관에 실질적인 도움을 주고자 함 입니다.

  • PDF

Mineralogical Characteristic and Occurrence of Tremolite and Actinolite in the Dong-A mine, Korea (동아광산 일대 투각섬석과 양기석의 산출상태 및 광물학적 특성 연구)

  • Kim, Seong Ho;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.333-341
    • /
    • 2015
  • As results of X-ray diffraction analysis, samples of asbestos and soil were composed maily of dolomite ($CaMg(Co_3)_2$, tremolite ($Ca_2Mg_5Si_{18}O_{22}(OH)_2$), actinolite ($Ca(Mg,\;Fe)_6Si_8O_{22}(OH)_2$), talc ($Mg_3Si_4O_{10}(OH)_2$), calcite ($CaCO_3$) and small amounts of quartz ($SiO_2$) and clay minerals. The average size of asbestos fibers was about $100{\mu}m$ and maximum of some asbestos was $250.0{\mu}m$ in length. The aspect ratio of asbestos fiber were over 3 : 1 and inclined extinction in the range of $8.0-19.5^{\circ}$. Single isolated fragments of asbestos are probably fiber and acicula form in crystal edge along the cleavage plane. Tremolite that composed main asbestos mineral in rock and soil around Dong-a mine is higher content of Fe than actinolite asbestos.

Analysis of Influencing Factors on Asbestos Demolitions Using a Text Mining Method (텍스트 마이닝 기법을 활용한 석면해체·제거작업 영향 요인 분석)

  • Lee, Jae-Woo;Kim, Do-Hyun;Kim, Yu-Jin;Noh, Jae-Yun;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.39-40
    • /
    • 2022
  • The use of asbestos has been completely prohibited in Korea since 2015. Therefore, nationally, the asbestos demolitions in the building are actively underway. In the process of demolishing asbestos, scattering dust occurs, which poses a risk to human body. These dusts causes fatal disease, and especially there is an increasing concern of safety about construction workers and building users. Until this day, however, only few researches have been conducted on asbestos demolishing process. Accordingly, it is necessary to analyze key factors and to develop a safety prediction model for workers. This study is an early stage of building quantified DB, and aims to actualize the safety problems of asbestos demolishing process using text mining method.

  • PDF

Occurrences of Sepiolites within a Seosan Group, Western Part of Chungnam (충남 서부 서산층군 내 해포석의 산출)

  • Song, Suckhwan;Lim, Koju;Lee, Wooseok
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • This study examines the mineralogy of sepiolites occurred within the carbonaceous rocks of Songak schist and Pyeongtaek migmatitic gneiss of Precambrian Seosan group, in the western part of Chungnam. Host rocks of the sepiolite were dolomitic rocks and have experienced hydrothermal alteration and metamorphism. Mesozoic granite is assumed as a main source of hydrothermal alteration for the dolomitic rocks. Some of the tremolite asbestos coexist with the sepiolites. Representative sepiolite and tremolite samples were collected from the layers cracks or fractures of the dolomitic rocks and/or examined with microscope with microscope, XRD, SEM and TEM. Sepiolites are mainly recognized along the cracks assumed as pathways of hydrothermal solution. Tremolites are mainly found at layers or cracks of the dolomitic rocks and occur as asbestos as well as non-asbestos forms. It was confirmed that some of the tremolite asbestos were coexisted with the sepiolites. Overall results suggest that the occurrences of sepiolites within the dolomitic rocks mainly result in the hydrothermal alteration and the fluid from the acidic rocks, possibly granites. It also suggests that coexisting tremolite asbestos were formed by similar geological environment.