• Title/Summary/Keyword: 석고보드 벽체

Search Result 16, Processing Time 0.021 seconds

Improvement of Sound Insulation at Low Frequencies Using Resilient Channel (탄성채널을 이용한 석고보드 건식벽체의 저주파 대역 차음성능 개선)

  • Kim, Kyung Ho;Jeon, Jin Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.94-99
    • /
    • 2017
  • Breaking the rigid connection between the two faces of the wall can significantly improve the sound transmission loss of the wall. This is usually achieved by resiliently mounting the gypsum board on one of the two faces of the wall using resilient channel. Resilient channel with less stiffness than that of air cavity could move the resonance frequency of the light-weight wall. So we can get higher sound transmission loss at low frequencies for light-weight wall using resilient channel. It's sound transmission loss is 17 dB higher than that of single stud wall, and 5 dB higher than that of double stud wall.

A Study on the Estimation of Adhesive Stability According to Organic.lnorganic Mixed Tile Bond Type for Application of Polishing Tile to Dry Wall System (건식벽체에 폴리싱타일을 적용하기 위한 유기.무기질 혼합계 타일접착제 종류에 따른 부착안정성 평가에 관한 연구)

  • Oh, Sang-Keun;Lee, Gi-Jang;Yoo, Jae-Kang;Kim, Su-Ryun;Lee, Sung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • Recently, polishing tile(porcelain homogeneous polished tile) was used in the construction field as a finishing material. But, there happened some problems such as tile exfoliation by construction condition in early ages. Also, for use of polishing tile in the dry wall system which used to lightweight wall, the examination of adhesive stability of polishing tile is needed. In this study, adhesive strength of Polishing tile was investigated by tile bond types on gypsum board and non asbestos board coated by tar-urethane and Polymer modified cementitious waterproofing membrane(Series I). Then, the effect of heat stress and vibration was estimated on gypsum and non asbestos board(Series II). As the result of study are the follows; (1) Polishing tile(600$\times$400mm) construction on waterproofing layer : Both laboratory estimation and spot examination sieve were happened that fall of tile because their hardening speed is late. (2) To using powder style adhesives in the dry wail with waterproofing layer : Adhesive strength of tile is Influenced by interface bond area and base side condition. (3) Shock and heat stresses : obvious decline of adhesive strength is not happened

Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar (경량기포모르터와 합성한 경량형강 벽체의 전단 저항)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.397-406
    • /
    • 2004
  • This paper presents the test and evaluation results on the shear strength and stiffness of a light steel stud wall from a lightweight foamed mortar (lightweight hybrid wall). The use of a lightweight foamed mortar was aimed at improving structural performance, thermal performance, and finish. Studiesshowed that it did not affect thermal performance, but it contributed to structural performance and finish when the unit weight was more than 0.8 (Editor's note: Please indicate the unit of measurement.). In this study, 14 specimens-whose parameters included the specific gravity of the lightweight foamed mortar (0.6, 0.8, 1.0, 1.2), the spacing of the stud (450 mm, 600 mm, or 900 mm), finishing materials (such as lightweight foamed mortar, OSB, and gypsum board), and bracing-were manufactured. Three typical, steel house-framing specimens were added to compare the test results with the 14 specimens. The results of in-plane shear tests show that the use of lightweight foamed mortar (1.15~5.38 times stronger, 1.45~13.7 times stiffer) results in ultimate strength and initial stiffness. In addition, it was possible to widen the stud spacing to up to 900 mm without decreasing shear strength. It was very important to prevent the lightweight foamed mortar from shrinking and to secure the adhesion between the steel stud and the lightweight foamed mortar to improve structural performance.

Analysis of the Wireless Communication Environment in the Narrowed Residential Space for the Fire fighting Operation (소방작전을 위한 협소거주 공간의 무선 통신 환경 분석)

  • Park, Hyun-Ju;Hong, Sang-Beom;Choi, Hyuk-Jo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.242-248
    • /
    • 2017
  • Recently, Population has been concentrated in cities due to rapid economic growth. As a result, urban buildings are becoming more dense, high-rise, and diversified. The shape of these urban buildings increases the risk of fire, accidents and crime. The narrow living space has the characteristic of the unchanged floor. In case of a fire, the living space of the narrow residence is large in the damage because the smoke diffusion rate is fast. The radio wave transmittance and transmission distance of wireless communication used in fire fighting operations vary depending on the type of building materials and buildings. Therefore, this paper analyzes the building materials and structural characteristics of the narrow residential space for efficient fire fighting operations. We have developed a communication environment solution for a narrow residential space for the optimal fire fighting operation through the measurement of the radio wave transmittance and the transmission distance of the wireless communication.

An Experimental Study for the Evaluations of Compressive Performance of Light-Weight Hybrid Wall Panel (경량합성 패널의 압축성능 평가에 관한 실험적 연구)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.455-462
    • /
    • 2007
  • The purpose of this paper is to evaluate experimentally the compressive performance of horizontal joints for light-weight hybrid panel in-filled with light-weight foamed mortar. The parameters include the presence of light-weight foamed mortar, the specific gravity of light-weight foamed mortar (0.8, 1.2), the finishing materials (light-weight foamed mortar, Oriented Strand Board [OSB], gypsum board), and the fixed shape of the hybrid panel. As the improved details for fixed end, the peak strength and the stiffness of the light-weight hybrid panel are enhanced as follows: 1.07-2.7 times in peak load, 15-24 times in initial stiffness. The peak strength of the light-weight hybrid panel obtained by the test result is in agreement with the calculations, which is the criterion value according to the domestic code.

Improvement of Fire Resistance for Timber Framed Walls by Reinforcement of Heavy Timber Frame

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Kim, Kwang-Mo
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.469-478
    • /
    • 2010
  • Fire resistance of new hybrid timber framed wall systems was evaluated in this study. These wall systems are composed of two major structural parts. One part is a heavy timber frame part designed to take charge of whole vertical load using heavy timber post and beam, and the other is an infill wall structure, designed to take charge of whole horizontal load and to provide an established level of fire resistance. A basic concept of this hybrid wall is adopted from a typical furniture structure with frame. A timber post and beam frame is constructed with Japanese Larch solid timber post(180mm by 180mm) and beam(180mm by 240mm). As infill wall systems, two types of walls are applied. One is a typical light timber framed wall with solid blocking and another is a structural insulated panel wall, in which polystyrene insulation is filled between two structural panels to make single structure. For all tested walls, two layers of 12.5mm thick type-X gypsum boards are used on fire exposed side. Prior to tests for hybrid walls, only infill walls are tested without heavy timber frame. All fire resistance tests are carried out in accordance with KS F 2257, and temperatures on several points within wall structure and unexposed wall surface are measured during fire tests. It is considered that the reinforcement of heavy timber frame is significantly efficient for improving the fire resistance of timber framed walls.

  • PDF