• Title/Summary/Keyword: 서포트 벡터 머신

Search Result 267, Processing Time 0.043 seconds

A Study on the Defect Classification of Low-contrast·Uneven·Featureless Surface Using Wavelet Transform and Support Vector Machine (웨이블렛변환과 서포트벡터머신을 이용한 저대비·불균일·무특징 표면 결함 분류에 관한 연구)

  • Kim, Sung Joo;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • In this paper, a method for improving the defect classification performance in steel plate surface has been studied, based on DWT(discrete wavelet transform) and SVM(support vector machine). Surface images of the steel plate have low contrast, uneven, and featureless, so that the contrast between defect and defect-free regions is not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. In order to improve the characteristics of these images, a synthetic images based on discrete wavelet transform are modeled. Using the synthetic images, edge-based features are extracted and also geometrical features are computed. SVM was configured in order to classify defect images using extracted features. As results of the experiment, the support vector machine based classifier showed good classification performance of 94.3%. The proposed classifier is expected to contribute to the key element of inspection process in smart factory.

Assessing the Relationship between MBTI User Personality and Smartphone Usage (스마트폰 사용과 MBTI 사용자 특성간의 관계 평가)

  • Rajashree, Sokasane S.;Kim, Kyungbaek
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Recently, predicting personality with the help of smartphone usage becomes very interesting and attention grabbing topic in the field of research. At present there are some approaches towards detecting a user's personality which uses the smartphones usage data, such as call detail records (CDRs), the usage of short message services (SMSs) and the usage of social networking services application. In this paper, we focus on the assessing the correlation between MBTI based user personality and the smartphone usage data. We used $Na{\ddot{i}}ve$ Bayes and SVM classifier for classifying user personalities by extracting some features from smartphone usage data. From analysis it is observed that, among all extracted features facebook usage log working as the best feature for classification of introverts and extraverts; and SVM classifier works well as compared to $Na{\ddot{i}}ve$ Bayes.

  • PDF

Classification Performance Analysis of Silicon Wafer Micro-Cracks Based on SVM (SVM 기반 실리콘 웨이퍼 마이크로크랙의 분류성능 분석)

  • Kim, Sang Yeon;Kim, Gyung Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.715-721
    • /
    • 2016
  • In this paper, the classification rate of micro-cracks in silicon wafers was improved using a SVM. In case I, we investigated how feature data of micro-cracks and SVM parameters affect a classification rate. As a result, weighting vector and bias did not affect the classification rate, which was improved in case of high cost and sigmoid kernel function. Case II was performed using a more high quality image than that in case I. It was identified that learning data and input data had a large effect on the classification rate. Finally, images from cases I and II and another illumination system were used in case III. In spite of different condition images, good classification rates was achieved. Critical points for micro-crack classification improvement are SVM parameters, kernel function, clustered feature data, and experimental conditions. In the future, excellent results could be obtained through SVM parameter tuning and clustered feature data.

Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining (코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석)

  • Choi, Sujin;Lee, Dongju;Hwang, Seungkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

Review of the Application of Artificial Intelligence in Blasting Area (발파 분야에서의 인공지능 활용 현황)

  • Kim, Minju;Ismail, L.A.;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.44-64
    • /
    • 2021
  • With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

Nonlinear Speech Production Modeling using Nonlinear Autoregressive Exogenous based on Support Vector Machine (서포트 벡터 머신 기반 비선형 외인성 자귀회귀를 이용한 비선형 조음 모델링)

  • Jang, Seung-Jin;Kim, Hyo-Min;Park, Young-Choel;Choi, Hong-Shik;Yoon, Young Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.113-116
    • /
    • 2007
  • In this paper, our proposed Nonlinear Autoregressive Exogenous (NARX) based on Least Square-Support Vector Regression (LS-SVR) is introduced and tested for producing natural sounds. This nonlinear synthesizer perfectly reproduce voiced sounds, and also conserve the naturalness such as jitter and shimmer, compared to LPC does not keep these naturalness. However, the results of some phonation are quite different from the original sounds. These results are assumed that single-band model can not afford to control and decompose the high frequency components. Therefore multi-band model with wavelet filterbank is adopted for substituting single band model. As a results, multi-band model results in improved stability. Finally, nonlinear speech modeling using NARX based on LS-SVR can successfully reconstruct synthesized sounds nearly similar to original voiced sounds.

  • PDF

Incremental SVM for Online Product Review Spam Detection (온라인 제품 리뷰 스팸 판별을 위한 점증적 SVM)

  • Ji, Chengzhang;Zhang, Jinhong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.89-93
    • /
    • 2014
  • Reviews are very important for potential consumer' making choices. They are also used by manufacturers to find problems of their products and to collect competitors' business information. But someone write fake reviews to mislead readers to make wrong choices. Therefore detecting fake reviews is an important problem for the E-commerce sites. Support Vector Machines (SVMs) are very important text classification algorithms with excellent performance. In this paper, we propose a new incremental algorithm based on weight and the extension of Karush-Kuhn-Tucker(KKT) conditions and Convex Hull for online Review Spam Detection. Finally, we analyze its performance in theory.

  • PDF

Effectiveness of Normalization Pre-Processing of Big Data to the Machine Learning Performance (빅데이터의 정규화 전처리과정이 기계학습의 성능에 미치는 영향)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.547-552
    • /
    • 2019
  • Recently, the massive growth in the scale of data has been observed as a major issue in the Big Data. Furthermore, the Big Data should be preprocessed for normalization to get a high performance of the Machine learning since the Big Data is also an input of Machine Learning. The performance varies by many factors such as the scope of the columns in a Big Data or the methods of normalization preprocessing. In this paper, the various types of normalization preprocessing methods and the scopes of the Big Data columns will be applied to the SVM(: Support Vector Machine) as a Machine Learning method to get the efficient environment for the normalization preprocessing. The Machine Learning experiment has been programmed in Python and the Jupyter Notebook.

Anomaly Detection and Diagnostics (ADD) Based on Support Vector Data Description (SVDD) for Energy Consumption in Commercial Building (SVDD를 활용한 상업용 건물에너지 소비패턴의 이상현상 감지)

  • Chae, Young-Tae
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • Anomaly detection on building energy consumption has been regarded as an effective tool to reduce energy saving on building operation and maintenance. However, it requires energy model and FDD expert for quantitative model approach or large amount of training data for qualitative/history data approach. Both method needs additional time and labors. This study propose a machine learning and data science approach to define faulty conditions on hourly building energy consumption with reducing data amount and input requirement. It suggests an application of Support Vector Data Description (SVDD) method on training normal condition of hourly building energy consumption incorporated with hourly outdoor air temperature and time integer in a week, 168 data points and identifying hourly abnormal condition in the next day. The result shows the developed model has a better performance when the ${\nu}$ (probability of error in the training set) is 0.05 and ${\gamma}$ (radius of hyper plane) 0.2. The model accuracy to identify anomaly operation ranges from 70% (10% increase anomaly) to 95% (20% decrease anomaly) for daily total (24 hours) and from 80% (10% decrease anomaly) to 10%(15% increase anomaly) for occupied hours, respectively.

Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data (실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측)

  • Ha, Eun-gyu;Kim, Tae-oh;Kim, Chang-bok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.561-569
    • /
    • 2019
  • Solar photovoltaic can provide electrical energy with only radiation, and its use is expanding rapidly as a new energy source. This study predicts the short and long-term PV power generation using actual converter output data of photovoltaic system. The prediction algorithm uses multiple linear regression, support vector machine (SVM), and deep learning such as deep neural network (DNN) and long short-term memory (LSTM). In addition, three models are used according to the input and output structure of the weather element. Long-term forecasts are made monthly, seasonally and annually, and short-term forecasts are made for 7 days. As a result, the deep learning network is better in prediction accuracy than multiple linear regression and SVM. In addition, LSTM, which is a better model for time series prediction than DNN, is somewhat superior in terms of prediction accuracy. The experiment results according to the input and output structure appear Model 2 has less error than Model 1, and Model 3 has less error than Model 2.