본 연구의 목적은 서비스러닝을 통한 교실 안의 학습이 지역사회에 실용적으로 전이될 수 있는 자기주도 학습과의 관계를 탐구하는 것이다. 본 연구의 대상은 2019년 9월 1일부터 2019년 12월28일까지 교양 과목 수강 학생을 대상으로 하였다. 본 논문의 연구 문제는 서비스러닝 기반 교양수업과 자기주도 학습과의 관계는 어떠한가? 즉, 서비스러닝 기반 교양수업이 자기주도 학습의 하위 요소인 개방성, 자율성, 문제해결력, 자기평가에 어떠한 영향을 미치는가이다. 그렇다면 학습자 개인의 변인은 자기주도 학습 능력에 어떻게 영향을 미칠 수 있는지를 알아보고자했다. 연구결과, 자율성과 문제해결능력 r=.66으로 높은 상관관계를 보여주었고, 개방성과 자기평가(r=.60) 자율성과 자기평가(r=.55)가 통계적으로 유의미한 상관관계의 결과를 가져왔다. 서비스러닝에 있어서의 학습자 자율성은 서비스러닝 활동의 학습 촉진 및 협력과 유의미한 상관관계를 보였다(**p<.01) 이 연구의 결과를 통해, 향후 학생들은 자기가 학습한 내용을 심화하여 지역사회기관 봉사를 통해 실천하고 경험하며 학교에서의 배움이 강의실에 머물러 있지 않고 사회로 환원이 가능한 개방성, 자율성, 봉사의 실천을 통해 실질적 세계에서 부딪칠 수 있는 문제해결 그리고 성찰을 통한 자기평가가 가능하다. 또한 학습자들은 사회 구성원으로서의 책임감과 민주시민으로서의 자존감을 고취 시킬 수 있었다.
제안하는 서비스는 OCR(Optical Character Recognition, 광학문자인식)과 딥러닝 패턴분석 알고리즘을 활용하여 문서를 효율적으로 관리하는 서비스로 필기를 많이 하는 사용자를 위한 기능을 제공한다. 최근 다양한 분야에서의 머신러닝 기반의 OCR의 활용이 증가했지만 기존의 애플리케이션은 패턴 분석 알고리즘과 통계 기반의 OCR을 혼합하여 사용하기 때문에 필기체에 대한 인식률이 높지 않다. 이에 본 논문에서는 OCR과 패턴분석 알고리즘을 활용하여 필기체에 대한 높은 인식률을 제공하는 서비스를 제안한다.
많은 인터넷 서비스가 그러하듯 e러닝은 지금의 호황을 맞기까지 크나큰 기대만큼이나 엄청난 좌절의 시기를 거쳐야 했다. e러닝이 태동하던 초창기의 열악한 환경과 질 낮은 서비스는 오프라인 학원에 비해 몇 배나 낮은 수강료에도 불구하고 학습자들로부터 외면을 받았다. 하지
만 2000년 이후 폭발적으로 증가한 인터넷 인구와 획기적으로 개선된 기술, 포기할 줄 모르고 열의를 보여온 선두 업체들의 눈물겨운 노력
은‘e러닝’을 본격적인 궤도에 올려놓았다. 온라인 교육 산업을 이끄는 두 기업, 메가스터디와 YBM시사닷컴을 살펴본다.
e러닝 산업은 콘텐츠 자체가 목적이 되는 타 디지털콘텐츠 산업과 달리 콘텐츠ㆍ인프라ㆍ서비스 등이 통합되어 지식의 전달ㆍ축적ㆍ재생산의 수단을 제공하는 지식기반 서비스 산업으로 디지털콘텐츠 산업의 주요 핵심으로 등장하게 되었다. WTO 체제하에서 글로벌 경쟁이 심화됨에 따라 기업들은 e러닝을 지식경영을 위한 전략적 모듈로 정하고 계속되는 경기침체에도 불구하고 투자를 지속하고 있다. 또한 2004년이후 WTO의 교육개방정책에 따라 유럽 및 중국 등이 교육시장을 개방하면서 e러닝이 그 대비책의 하나로 대두되면서 세계 각국의 관심이 점점 높아지고 있다.
최근 딥러닝(Deep Learning) 기술의 발전에 따라 컴퓨터 비전(Computer Vision) 분야의 이미지 인식 성능이 향상되고 있으며, 또한 Serverless Computing이 이벤트 기반의 클라우드 애플리케이션 개발 및 서비스를 위한 차세대 클라우드 컴퓨팅 기술로 각광받고 있어 딥러닝과 Serverless Computing 기술을 접목하여 실생활에 이미지 인식 서비스를 사용하고자 하는 시도가 증가하고 있다. 따라서 본 논문에서는 Serverless Computing 기술을 활용하여 효율적인 딥러닝 기반 이미지 인식 서비스 시스템 개발 방법을 기술한다. 제안하는 시스템은 Serverless Computing 기반 AWS Lambda Server를 이용하여 적은 비용으로 대형 신경망 모델을 사용자에게 서비스할 수 있는 방법을 제안한다. 또한 AWS Lambda Server의 단점인 Cold Start Time 문제와 용량제한 문제를 해결하여 효과적으로 대형 신경망 모델을 사용하는 Serverless Computing 시스템을 구축할 수 있음을 보인다. 실험을 통해 AWS Lambda Serverless Computing 기술을 활용하여 본 논문에서 제안한 시스템이 비용 절감뿐만 아니라 처리 시간 및 용량제한 문제를 해결하여 대형 신경망 모델을 서비스하기에 효율적인 성능을 보임을 확인하였다.
최근 딥러닝은 하드웨어 성능이 향상됨에 따라 자연어 처리, 영상 인식 등의 다양한 기술에 접목되어 활용되고 있다. 이러한 기술들을 활용해 지능형 교통 시스템(ITS), 스마트홈, 헬스케어 등의 산업분야에서 데이터를 분석하여 고속도로 속도위반 차량 검출, 에너지 사용량 제어, 응급상황 등과 같은 고품질의 서비스를 제공하며, 고품질의 서비스를 제공하기 위해서는 정확도가 향상된 딥러닝 모델이 적용되어야 한다. 이를 위해 서비스 환경의 데이터를 분석하기 위한 딥러닝 모델을 개발할 때, 개발자는 신뢰성이 검증된 최신의 딥러닝 모델을 적용할 수 있어야 한다. 이는 개발자가 참조하는 딥러닝 모델에 적용된 학습 데이터셋의 정확도를 측정하여 검증할 수 있다. 이러한 검증을 위해서 개발자는 학습 데이터셋, 딥러닝의 계층구조 및 개발 환경 등과 같은 내용을 포함하는 딥러닝 모델을 문서화하여 적용하기 위한 구조적인 정보가 필요하다. 본 논문에서는 신뢰성있는 딥러닝 기반 데이터 분석 모델을 참조하기 위한 딥러닝 기술 언어를 제안한다. 제안하는 기술 언어는 신뢰성 있는 딥러닝 모델을 개발하는데 필요한 학습데이터셋, 개발 환경 및 설정 등의 정보와 더불어 딥러닝 모델의 계층구조를 표현할 수 있다. 제안하는 딥러닝 기술 언어를 이용하여 개발자는 지능형 교통 시스템에서 참조하는 분석 모델의 정확도를 검증할 수 있다. 실험에서는 제안하는 언어의 유효성을 검증하기 위해, 번호판 인식 모델을 중심으로 딥러닝 기술 문서의 적용과정을 보인다.
인터넷 입시 과외를 비롯 외국어학습, 대학 정규과정 등 각종 e-러닝(e-Learning) 학습 프로그램이 빠른 속도로 번지고 있다.
또한 기업 연수현장에도‘사이버 바람’이 거세게 불고 있다. 이런 배경에서 지난 10월 23일 정보통신부는 한국e-러닝학회, KDI국제정책대학원, 한국정보통신기자협회의 후원 아래‘한국 e-러닝 산업 활성화 전략 세미나’를 개최했다. 국내 e-러닝 비즈니스 관계자 182명이 참석한 이날 행사에는 e-러닝 산업현황 및 성공사례, 비즈니스 모델 등이 발표되고, 게임 및 모바일 관점에서의 서비스 동향도 소개돼 뜻깊은 자리가 됐다.
최근 딥러닝 기술은 다양한 분야에서 놀라운 성능을 보여주고 있어 많은 서비스에 적용되고 있다. 얼굴인식 또한 딥러닝 기술을 접목하여 높은 수준으로 얼굴인식이 가능해졌다. 하지만 딥러닝 기술은 원본 이미지를 최소한으로 변조시켜 딥러닝 모델의 오인식을 발생시키는 적대적 예제에 취약하다. 이에 따라, 본 논문에서는 딥러닝 기반 얼굴인식 시스템에 대해 적대적 예제를 이용하여 기만공격 실험을 수행하였으며 실제 얼굴에 분장할 수 있는 영역을 고려하여 설정된 변조 영역에 따른 기만공격 성능을 분석한다.
음식과 맛집에 대한 사용자의 정보검색 니즈가 나날이 증가하면서 서비스 제공자가 정보 제공의 대상이 되는 맛집 상호명을 파악하는 것은 중요한 이슈다. 그러나 업종의 특성상 점포가 새로 생겨나는 주기는 매우 짧은 반면, 신규 점포의 서비스 등록 시점에는 시간적 차이가 존재하는 문제가 있다. 본 논문에서는 신규 상호명을 능동적으로 파악하기 위해 위치기반 서비스 로그에서 맛집 상호명을 추출하는 문자 기반의 딥러닝 모델 및 방법론을 제시한다. 자체 구축한 학습 데이터셋으로 실험한 결과, 제안하는 모델이 기존 기계학습 모델보다 높은 정확도로 상호명을 분류할 수 있음을 확인하였다. 또한, 사전 학습된 모델을 검색로그에 적용하여 신규 상호명 후보를 추출함으로써 향후 상호명 DB를 능동적으로 업데이트 할 수 있는 가능성을 타진하였다.
본 연구의 주목적은 이러닝 서비스의 지속사용의도에 영향을 미치는 요인에 관하여 체계적인 분석을 수행하는 것이다. 이러한 연구목적을 달성하기 위하여 본 연구에서는 기본 분석틀로서 Bhattacherjee(2001)에 의해 제안된 후기수용 모델(PAM)을 도입하였다. 그리고 이러닝 서비스에서 사용자의 수용 후 행동을 파악해 보기 위하여 관련 선행문헌에 대한 종합적 고찰 결과를 토대로 콘텐츠 품질, 상호작용성, 기대충족, 지각된 사용용이성, 지각된 유용성, 만족, 지속사용의도 등 일곱 가지 연구변수를 도출하였다. 이러닝 서비스 이용 경험자를 대상으로 조사를 수행한 후, 연구모델에 관하여 공분산구조모델 분석기법을 통한 연구모델의 평가 및 가설검정이 이루어졌다. 본 연구의 분석결과를 요약해 보면 다음과 같다. 첫째, 이러닝 서비스의 콘텐츠 품질, 상호작용성, 기대충족 등 세 가지 특성요인이 지각된 유용성에 긍정적인 영향을 미치는 것으로 밝혀졌다. 둘째, 이러닝 서비스의 콘텐츠 품질, 상호작용성, 기대충족, 지각된 사용용이성 모두는 사용자 만족에 긍정적인 영향을 미치는 것으로 나타났다. 마지막으로, 지각된 유용성은 사용자 만족에 긍정적인 영향을 미치며, 지각된 유용성과 사용자 만족은 모두 지속사용의도에 긍정적인 영향을 미치는 것으로 밝혀졌다. 본 연구의 결과를 토대로 이러닝 서비스 제공자 및 관련분야 연구자에게 유의미한 시사점을 제공하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.