• Title/Summary/Keyword: 서브프레임 등가모델

Search Result 3, Processing Time 0.02 seconds

Analysis of Vibration Characteristics of a Full Vehicle Model Using Substructure Synthesis Method (부분구조합성법을 이용한 전차량 모델의 진동 특성 분석)

  • Kim, Bum-Suk;Kim, Bong-Soo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.519-525
    • /
    • 2010
  • The finite element (FE) method is generally used to model and simulate the physical behavior of large structures, such as passenger vehicles or aircraft. However, FE analysis involves a very large computation time and cost for developing the analysis model. Therefore, the vibration characteristics of large structural systems are often analyzed using the component mode synthesis (CMS) method, which is one of the substructure synthesis methods. In this study, the vibration characteristics of passenger vehicles are analyzed by using the substructure synthesis method. A passenger vehicle model, which includes a vehicle body, suspension systems, and a sub-frame, is presented. The physical components of the vehicle system are modeled as equivalent substructures using the Craig-Bampton method of CMS. The vibration characteristics, such as the natural frequencies and mode shapes and frequency response, of the vehicle system are determined. The effects of variations in some design parameters on the vibration characteristics of the full vehicle model are also investigated.

Analysis of the Tolerance Effects of Main Design Parameters on the Vibration Characteristics of a Vehicle Sub-frame (차량 서브프레임의 진동특성에 미치는 주요 설계변수 공차의 영향 분석)

  • Kim, Bum-Suk;Kim, Bong-Soo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.100-105
    • /
    • 2008
  • In the design process of an automobile part, several analysis methods are usually utilized to evaluate the performance of the part. However, most automobile design engineers do not directly utilize CAE (Computer Aided Engineering) tools since specific skills are required to obtain practical results. Moreover, CAE requires a huge amount of computation time and cost. In order to resolve these problems, a new design approach named First Order Analysis (FOA) technique has been proposed. In this paper, the FOA technique is employed to design a vehicle sub-frame. An equivalent model of the vehicle sub-frame which only consists of beam elements is proposed and the modal properties obtained with the model are compared to those obtained with a full scale finite element model. The effect of some parameter tolerances on the modal characteristics of the vehicle sub-frame is investigated by employing the FOA equivalent model.