• Title/Summary/Keyword: 생태축

Search Result 133, Processing Time 0.022 seconds

Developmental Abnormality in Agricultural Region and Toxicity of the Fungicide Benomyl on Korea salamander, Hynobius leechii (한국산 도롱뇽(Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성효과)

  • Choi, Yeoung-Ju;Yoon, Chun-Sik;Park, Joo-Hung;Jin, Jung-Hyo;Cheong, Seon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.198-212
    • /
    • 2002
  • A numerical variation and abnormalities were studied on egg bags and embryos of Korean salamander, Hynobius leechii from agricultural habitat. The teratogenic and toxic effects of fungicide benomyl were also investigated with early embryos from non-agricultural habitat. We collected 144 egg bags from agricultural region, and 3418 of early embryos were contained. The lengths of egg bags were varied from 10 to 23 cm and the most frequent length was 19 cm. The number of embryos was varied from 7 to 43, and the most frequent range was 22 to 26. Spontaneous abnormalities were occurred in 406 embryos among 116 egg bags, and 24 kinds of external abnormalities were found. Individuals showing severe external defect were histologically studied and they showed optic dyspalsia, thyroid carcinoma, somatic muscular dysplasia, partial biaxial structure, decrease of red blood cells in the heart, cephalic degeneration and intestinal dysplasia. 385 embryos from non-agricultural region were exposed to 200 nM${\sim}$ 1 ${\mu}$M of benomyl at blastula or gastrula for 12 days. All embryo were dead in the concentration of 1 ${\mu}$M (LD$_{100}$) and 75% of embryos were dead in 800nM of benomyl. Speciflc effect due to benomyl was acrania or cephalic dysplasia and this restult suggests that the benomyl inhibit stongly to the development of neural tissue. These abnormal developments may be caused by antimitotic action, inhibition of tubulin complex, destruction of microtubule, inhibitions of neurulation and closing of neural fold, and by the inhibition of the movement of neural crest cells.

Studies on Ecological Variation and Inheritance for Agronomical Characters of Sweet Sorghum Varieties (Sorghum vulgare PERS) in Korea (단수수(Sorghum vulgare PERS) 품종의 생태변이 및 유용형질의 유전에 관한 연구)

  • Se-Ho Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.1-43
    • /
    • 1971
  • Experiment I: The objective of this study was to know variation in some selected agronomic characters of sweet sorghum when planted in several growing seasons. The 17 different sweet sorghum varieties having various maturities, and plant, syrup and sugar types were used in this study which had been carried out for the period of two years from 1968 to 1969 at Industrial Crops Division of Crop Experiment Station in Suwon. These varieties were planted at an interval of 20 days from April 5 to August 25 both in 1968 and 1969. The experimental results could be summarized as follows: 1. As planting was made early, the number of days from sowing to germination was getting prolonged while germination took place early when planted at the later date of which air temperature was relatively higher. However, such a tendency was not observed beyond the planting on August 25. In general, a significant negative correlation was found between the number of days from sowing to germination and the average daily temperature but a positive correlation was found between the former and the total accumulated average temperature during the growth period. 2. The period from sowing to heading was generally shortened as planting was getting delayed. The average varietal difference in number of days from sowing to heading was as much as 30.2 days. All the varieties were grouped into early-, medium and late-maturing groups based upon a difference of 10 days in heading. The average number of days from sowing to heading was 78.5$\pm$4.5 days in the early-maturing varieties, 88.5$\pm$4.5 days in the medium varieties and 98.5$\pm$4.5 days in the late-maturing varieties, respectively. The early-maturing varieties had the shortest period to heading when planted from July 15 to August 5, the medium varieties did when planted before July 15 and the late-maturing varieties did when planted before June 5. 3. The relationship between the sowing date (x) and number of days from sowing to heading could be expressed in an equation of y=a+bx. A highly positive correlation was found between the coefficient of the equation(shortening rate in heading time) and the average number of days from sowing to heading. 4. The number of days from sowing to heading was shortened as the daily average temperature during the growth period was getting higher. Early-maturing varieties had the shortest period to heading at a temperature of 24.2$^{\circ}C$, medium varieties at 23.8$^{\circ}C$ and late-maturing varieties at 22.9$^{\circ}C$, respectively. In other words, the number of days from sowing to heading was shortened rapidly in case that the average temperature for 30 days before heading was 22$^{\circ}C$ to $25^{\circ}C$. It prolonged relatively when the temperature was lower than 21$^{\circ}C$. 5. There was a little difference in plant height among varieties. In case of early planting, no noticeable difference in the height was observed. The plant height shortened generally as planting season was delayed. Elongation of plant height was remarkably accelerated as planting was delayed. This tendency was more pronounced in case of early-maturing varieties rather than late-maturing varieties. As a result, the difference in plant height between the maximum and the minimum was greater in late-maturing varieties than in early-maturing varieties. 6. Diameter of the stalk was getting thicker as planted earlier in late-maturing varieties. On the other hand, medium or early-maturing varieties had he thickest diameter when they were planted on April 25. 7. In general, a higher stalk yield was obtained when planted from April 25 to May 15. However, the planting time for the maximum stalk yield varied from one variety to another depending upon maturity of variety. Ear]y-maturing varieties produced the maximum yield when planted about April 25, medium varieties from April 25 to May 15 and late-maturing varieties did when planted from April 5 to May 15 respectively. The yield decreased linearly when they were planted later than the above dates. 8. A varietal difference in Brix % was also observed. The Brix % decreased linearly when the varieties were planted later than May 15. Therefore, a highly negative relationship between planting date(x) and Brix %(y) was detected. 9. The Brix % during 40 to 45 days after leading was the highest at the 1st to the 3rd internodes from the top while it decreased gradually from the 4th internode. It increased again somewhat at the 2nd internode from the ground level. However, it showed a reverse relationship between the Brix % and position of internode before heading. 10. Sugar content in stalk decreased gradually as planting was getting delayed though one variety differed from another. It seemed that sweet sorghum which planted later than June had no value as a sugar crop at all. 11. The Brix % and sugar content in stalk increased from heading and reached the maximum 40 to 45 days after heading. The percentage of purity showed the same tendency as the mentioned characters. Accordingly, a highly positive correlation was observed between. percentage of purity and Brix % or sugar content in stalk. 12. The highest refinable sugar yield was obtained from the planting on April 25 in late-maturing varieties and from that on May 15 in early-maturing varieties. The yield rapidly decreased when planted later than those dates. Such a negative correlation between planting date(x) and refinable sugar yield(y) was highly significant at 1% level. 13. Negative correlations or linear regressions between delayed planting and the number of days from sowing to germination. accumulated temperature during germination period, number of days to heading, accumulated temperature to heading, plant height, stem diameter, stalk weight, Brix %. sugar content, refinable sugar yield or Purity % were obtained. On the other hand, highly positive correlations between the number of days from sowing to heading(x) and Brix %, sugar content, purity %, refinable sugar yield, plant height or stalk yield, between Brix %(x) and purity %, refinable sugar yield or stalk yield, between sugar content(x) and purity% or refinable sugar yield(y), between purity %(x) and refinable sugar yield and between daylength at heading(x) and Brix %. number of days from sowing to heading, sugar content, purity % or refinable sugar yield (y), were found, respectively. Experiment II: The 11 varieties were selected out of the varieties used in Experiment I from ecological and genetic viewpoints. Complete diallel cross were made among them and the heading date, stalk length, stalk yield, Brix %, syrup yield, combining ability and genetic behavior of F$_1$ plants and their parental varieties were investigated. The results could be summarized as follows: 1. In general, number of days to heading showed a partial dominance over earliness or late maturity or had a mid-value, though there were some specific combinations showing a complete dominance or transgressive segregation in maturity. Some combinations showed relatively high general or specific combining abilities in maturity. Therefore, a 50 to 50 segregation ratio in heading date could be estimated in this study and it might be positive to have a selection in early generation since heritability of the character was relatively high. 2. A vigorous hybrid vigor was observed in stalk length. A complete or partial dominant effect of long stalk was obtained. The general combining ability and specific combining ability of stalk length were generally high. Long and short stalks segregated in a ratio of 50:50 and its heritability was relatively low. 3. Except for several specific combinations, high stalk yield seemed to be partial dominant over the low yield. Some varieties demonstrated relatively high general as well as specific combining abilities. It was assumed that several recessive genes were involved in expression of this character. The interaction among regulating recessive genes was also obtained. Accordingly, the heritability of stalk yield seemed to be rather low. 4. The Brix % of hybrid plants located around mid-parental value though some of them showed much higher or lower percentage. It could be explained by the fact that such behavior might be due to partial dominance of Brix %. The varieties with, relatively higher Brix % were high both in general. and specific combining abilities. Therefore, it could be recommended to use the varieties having higher sugar content in order to develop higher-sugar varieties. 5. The syrup yield seemed to be transgressively segregated or completely dominant over low yield. Hybrid vigor of syrup yield was relatively high. No-consistent relationship between general combining ability and specific combining ability was observed. However, some cases demonstrated that the varieties with relatively higher general combining ability had relatively lower specific combining ability. It was assumed that the frequencies of dominant and recessive alleles were almost same.

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF