• Title/Summary/Keyword: 생체적합도

Search Result 827, Processing Time 0.026 seconds

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Comparison in Water Consumption, Plant and Fruit Growth of Different Europe Eggplant Cultivars in Coir Substrate Hydroponics under High Temperature Conditions (고온조건하에서 코이어 배지에서 유럽형 가지 품종별 수분소비량, 식물체 생육 및 과실 특성 비교)

  • Seoa Yoon;Jeongman Kim;Eunyoung Choi;Kiyoung Choi;Kyunglee Choi;Kijeong Nam;Seokkwi Oh;Jonghyang Bae;Yongbeom Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including 'Bartok (BA)', 'Bowie (BO)', 'Black Pearl (BP)', 'Ishbilia (I)', 'Mabel (M)', 'Vestale (VE)' and 'Velia (VL)', in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in 'VL', followed by 'M', and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for 'M', which was higher than other cultivars, and 'VE' and 'VL' were 8.5 and 8.8, respectively. The weight per fruit was low for 'M' at 136 g, and the highest in 'VE' and 'VL' at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, 'M', which has high water use efficiency and a large number of fruits, and 'VL', which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.

Selection of Nutrient Solutions and Substrates for Radish (Raphanus sativus L. var. sativus) Growth (20일 무(Raphanus sativus L. var. sativus)의 수경재배에 적합한 양액 및 배지의 선발)

  • Park, K.W.;Hong, H.Y.
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.236-247
    • /
    • 1996
  • The main objective of this study was to evaluate the effectiveness of nutrient solutions, substrates, and nutrient solution concentrations in substrate culture of radish(Raphanus sativus L. var. sativus). Cooper's, Hoagland & Arnon' 5, and Yamazaki's solution were used to determine the most suitable nutrient solution in deep flow culture(DFC). In result, Yamazaki's solution treatment showed better results than Hoagland's and Cooper's solution treatments in leaf length, leaf number, shoot and root fresh weights. Cooper's solution was much worse than others. Root shape index were low as 0.6 in all treatments. The selection of suitable was conducted among 14 kinds of substrates which were used commercially, such as sand, perlite and peatmoss, in substrates culture. Sand was the most proper in radish growth and shortened the growth periods. Sand also showed better results then others in leaf length, leaf number, shoot and root fresh weight. On the contrary, radish growth in peatmoss was the worst. Generally, root shape index was higher in substrate than in DFC. In order to investigate the suitable ionic strength in radish, Yamazaki's solution was treated with EC of 0.5, 1.0, 1.5, and 2.0 mS/cm. Generally radish growth above 1.0 mS/cm concentration was good, and the best result was shown in 1.5 mS/cm. Vitamin C contents were not significantly different in the roots of radish grown under 1.0 mS/cm or more. The highest vitamin C content was shown in 0.5 mS/cm, and so was thiocyanate content. Anthocyanin contents increased with the increase of the ionic strength in nutrient solution. Mineral nutrient contents had no significant statistical differences between the treatments, but potassium content was remarkably high in 1.5 mS/cm.

  • PDF

Performance Evaluation of Loss Functions and Composition Methods of Log-scale Train Data for Supervised Learning of Neural Network (신경 망의 지도 학습을 위한 로그 간격의 학습 자료 구성 방식과 손실 함수의 성능 평가)

  • Donggyu Song;Seheon Ko;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.388-393
    • /
    • 2023
  • The analysis of engineering data using neural network based on supervised learning has been utilized in various engineering fields such as optimization of chemical engineering process, concentration prediction of particulate matter pollution, prediction of thermodynamic phase equilibria, and prediction of physical properties for transport phenomena system. The supervised learning requires training data, and the performance of the supervised learning is affected by the composition and the configurations of the given training data. Among the frequently observed engineering data, the data is given in log-scale such as length of DNA, concentration of analytes, etc. In this study, for widely distributed log-scaled training data of virtual 100×100 images, available loss functions were quantitatively evaluated in terms of (i) confusion matrix, (ii) maximum relative error and (iii) mean relative error. As a result, the loss functions of mean-absolute-percentage-error and mean-squared-logarithmic-error were the optimal functions for the log-scaled training data. Furthermore, we figured out that uniformly selected training data lead to the best prediction performance. The optimal loss functions and method for how to compose training data studied in this work would be applied to engineering problems such as evaluating DNA length, analyzing biomolecules, predicting concentration of colloidal suspension.

Adsorption of Glycerol on Hydroxyapatite Enhanced Colloidal Stability in Phosphate Buffered Saline Solution (글리세롤 흡착으로 인산완충식염수에서 콜로이드 안정성이 향상된 수산화인회석 합성)

  • Jaun An;Hyebin Choi;Keunyoung Lee;Ki-Young Kwon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.670-673
    • /
    • 2023
  • The biocompatibility of hydroxyapatite (HAP) has led to its application in various fields. To accomplish practical biological applications, such as drug/gene delivery, the colloidal stability of HAP in phosphate-buffered saline (PBS) is particularly important. In this study, we prepared a glycerol incorporated-HAP (Gly-HAP) by heating HAP in a glycerol environment at 200 ℃. To compare morphology and colloidal stability, HAP prepared at room temperature (RT-HAP) was thermally treated in water at 200 ℃ (H2O-HAP). The heat treatment of HAP in both water and glycerol solutions results in an increase in the crystallinity of HAPs. Due to the low solubility of HAP in glycerol and the adsorption of glycerol on the HAP surface, crystal growth is limited. However, the heat-treated HAP under water increased in size by approximately four times compared to the initial crystallites. Compared to RT-HAP and H2O-HAP, Gly-HAP shows improved colloidal stability in PBS, which originates from the adsorption of glycerol on the HAP surface that inhibits the agglomeration of individual HAP precipitates.

Effect of LED Light Intensity on Seedling Quality and Tuber Production of Potato Stem Cuttings Grown in a Closed-Type Plant Production System (폐쇄형식물생산시스템을 이용한 감자 경삽묘 육묘시 묘소질과 괴경 생산에 대한 LED 광도의 영향)

  • Jo, Man Hyun;Ham, In Ki;Park, Kwon Seo;Cho, Ji Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.468-476
    • /
    • 2020
  • This study was performed to establish light intensity conditions for producing stem cuttings for aeroponic systems suitable for seed potato production using a closed-type plant production system. Shoot tip cultured plantlets of 'Sumi' and 'Chubaek' potato (Solanum tuberosum L.) were acclimatized, cuttings were collected, and stem cuttings were planted. The seedlings were raised for 40 days at different LED light intensities (60, 120, 180, and 240 μmol·m-2·s-1), and were cultivated in an aeroponic system for 80 days. When stem cuttings were raised at 60 μmol·m-2·s-1 LED light intensity, the plant height was the longest, at 17.3 cm for 'Sumi' and 16.1 cm for 'Chubaek', and the number of nodes was the highest in both cultivars. The higher light intensities, produced smaller plants with fewer nodes. The leaf areas, SPAD values, and Fv/Fm values differed slightly between cultivars. The fresh weight of stem cuttings, and the production rate of healthy stem cuttings were the highest at 60 μmol·m-2·s-1. In the aeroponic system, seedlings raised at 60 μmol·m-2·s-1 with LED light intensity showed a difference between the cultivars, but the fresh weight of stems and leaves above the planting plate was the heaviest. In addition, below the planting plate the stem cuttings were longest and the root weight was heaviest at 60 μmol·m-2·s-1 LED light intensity. The number of stolons also differed between cultivars, but was greatest for seedlings raised at 60 μmol·m-2·s-1 LED light intensity, at 4.2/plant for 'Sumi' and 7.7/plant for 'Chubaek'. At 60 μmol·m-2·s-1 LED light intensity, the tuber number and total tuber weight were the best, but the higher the light intensity, the smaller the total tuber number and total tuber weight for both cultivars. In conclusion, when producing potato stem cuttings for aeroponic systems using a closed-type plant production system, the most suitable LED light intensity for raising seedlings was found to be 60 μmol·m-2·s-1.

Effect of Non-Perforated Breathable Films on the Storability of 'Fuji' Apples in Modified Atmosphere Condition in the Different Storage Temperature (비천공 Breathable필름이 몇 가지 저장온도에서 '후지' 사과의 MA 저장성에 미치는 영향)

  • Choi, In-Lee;Sung Mi, Hong;Min Jae, Jeong;Jun Pill, Baek;Ho-Min, Kang
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.60-64
    • /
    • 2014
  • These studies were conducted to identify the effects of non-perforated breathable package film on storability at $1^{\circ}C$, $8^{\circ}C$, and $20^{\circ}C$ storage of 'Fuji' apples. The fresh weight loss rate was less than 2.0% in all non-perforated breathable films at three different storage periods and temperatures, $1^{\circ}C$; 210 days, $8^{\circ}C$; 75 days, and $20^{\circ}C$; 30 days except for the perforated film. 1,300 cc ($1^{\circ}C$), 5,000 cc ($8^{\circ}C$), and 10,000 cc ($20^{\circ}C$) films were closed at the optimum MA storage condition by carbon dioxide and oxygen concentration. Ethylene concentration was lowest at the 40,000 cc film in every temperatures during storage. The 1,300 cc film established higher result in soluble solid and vitamin C content than any other films at $1^{\circ}C$, also showed higher in visual quality by panel test. The 5,000 cc film had the best results on soluble solid and off-flavor in $8^{\circ}C$. In the $20^{\circ}C$ storage after 30 days of treatment the 10,000 cc film had highest firmness and visual quality. Following these results, it come to conclusion the suitable type of non-perforated breathable film such as 1,300 cc at $1^{\circ}C$, 5,000 cc at $8^{\circ}C$, and 10,000 cc at $20^{\circ}C$ for MA storage in 'Fuji' apples.

Influence of Post-planting Fertilizer Concentrations Supplied through Sub-irrigation in Winter Season Cultivation of Tomato on the Seedling Growth and Changes in the Chemical Properties of Root Media (저면관비 방법으로 동절기 토마토 육묘시 추비 농도가 묘 생장과 상토의 화학성 변화에 미치는 영향)

  • Park, In Sook;Shim, Chang Yong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This research was conducted to investigate the influence of post-planting fertilizer concentrations on the growth of seedlings and changes of nutrient concentrations of media in tomato seedling production through sub-irrigation. Two root media such as peat moss (grade of 0 to 6 mm, PM06) plus perlite (grade of 1 to 2 mm (PE2)(7:3, v/v) and peat moss (grade of 5 to 15 mm, PM515) plus PE2 (7:3, v/v) were formulated and filled into 72-cell plug trays. After seeds of 'Dotaerang Dia' tomato were sown and germinated at $28^{\circ}C$, the trays were moved to greenhouse and seedlings were raised 35 days. When the cotyledons were emerged, post-planting fertilizers of 13-2-13, 15-0-15 and 20-9-20 ($N-P_2O_5-K_2O$) were applied in a sequence. The fertilizer concentrations based on N in each plug stage were differed with $25mg{\cdot}L^{-1}$ in three treatments. The fertilizer solutions were supplied when the weight of plug trays decreased to 40 to 50% compared to container capacity. The root media were collected in 1, 2, 4, and 5 weeks after sowing and were divided into top, middle, and bottom parts, then were analysed for pH, EC and macro-nutrient concentrations. The seedling growth was investigated 5 weeks after sowing. The pH and EC in PM06+PE2 was higher than those of PM515+PE2. The bottom and mid-part had higher pH and lower EC compared to upper part in each medium. The differences of EC between upper and bottom parts were around 2 times in each medium. The $NH_4-N$ and K concentrations in program 3 of PM06+PE2 showed the highest concentrations among all treatments. The $NO_3-N$ concentrations in PM06+PE2 increased gradually and this rising tendency become severe as post-planting fertilizer concentrations were elevated. The seedling growth in terms of fresh and dry weights was the highest in the treatment of program 2 in PM06+PE2 among all treatments tested. Above results indicate that the gradual increases of fertilizer concentrations from 25 to $125mg{\cdot}L^{-1}$ in plug stages 2, 3, and 4 plug stages are desirable for

Multiple Linear Analysis for Generating Parametric Images of Irreversible Radiotracer (비가역 방사성추적자 파라메터 영상을 위한 다중선형분석법)

  • Kim, Su-Jin;Lee, Jae-Sung;Lee, Won-Woo;Kim, Yu-Kyeong;Jang, Sung-June;Son, Kyu-Ri;Kim, Hyo-Cheol;Chung, Jin-Wook;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.317-325
    • /
    • 2007
  • Purpose: Biological parameters can be quantified using dynamic PET data with compartment modeling and Nonlinear Least Square (NLS) estimation. However, the generation of parametric images using the NLS is not appropriate because of the initial value problem and excessive computation time. In irreversible model, Patlak graphical analysis (PGA) has been commonly used as an alternative to the NLS method. In PGA, however, the start time ($t^*$, time where linear phase starts) has to be determined. In this study, we suggest a new Multiple Linear Analysis for irreversible radiotracer (MLAIR) to estimate fluoride bone influx rate (Ki). Methods: $[^{18}F]Fluoride$ dynamic PET scans was acquired for 60 min in three normal mini-pigs. The plasma input curve was derived using blood sampling from the femoral artery. Tissue time-activity curves were measured by drawing region of interests (ROls) on the femur head, vertebra, and muscle. Parametric images of Ki were generated using MLAIR and PGA methods. Result: In ROI analysis, estimated Ki values using MLAIR and PGA method was slightly higher than those of NLS, but the results of MLAIR and PGA were equivalent. Patlak slopes (Ki) were changed with different $t^*$ in low uptake region. Compared with PGA, the quality of parametric image was considerably improved using new method. Conclusion: The results showed that the MLAIR was efficient and robust method for the generation of Ki parametric image from $[^{18}F]Fluoride$ PET. It will be also a good alternative to PGA for the radiotracers with irreversible three compartment model.

Effect of LED and QD-LED(Quantum Dot) Treatments on Production and Quality of Red Radish(Raphanus sativus L.) Sprout (LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향)

  • Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.265-272
    • /
    • 2019
  • The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.