• Title/Summary/Keyword: 생지화학적 기능

Search Result 13, Processing Time 0.024 seconds

Functional Assessment of Gangcheon Replacement Wetland Using Modified HGM (수정 수문지형학적 방법을 적용한 강천 대체습지의 기능평가)

  • Kim, Jungwook;Lee, Bo Eun;Kim, Jae Geun;Oh, Seunghyun;Jung, Jaewon;Lee, Myungjin;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.318-326
    • /
    • 2017
  • Riverine wetlands were reduced and damaged by dredging of rivers and constructing parks in wetlands by Four Rivers Project from 2008 to 2013. Therefore, replacement wetlands were constructed for the compensation of wetland loss by the government. However, It is not enough to manage replacement wetlands. In order to manage the wetlands efficiently, it is necessaty to assess the functions of the wetlands and to manage them according to their functions. Here we performed functional assessments for a replacement wetland called Gangcheon wetland using the modified HGM approach. Hydrological, biogeochemical, animal habitat, and plant habitat functions for the wetland were assessed. To assess the functions, we collected informations for modified HGM approach from the monitored hydrologic data, field survey, published reports and documents for before and after the project, and hydraulic & hydrologic modeling. As the results of the assessment, the hydrological function for the replacement wetland showed 65.5% of the reference wetland, biogeochemical function showed 66.6%, plant habitat function showed 75%, and animal habitat function showed 108.3%. Overall, Gangcheon wetland function after the project was reduced to 78.9% of the function before the project. The decrease in hydrological function is due to the decrease of subsurface storage of water. And the decrease in biogeochemical & pland habitat functions is due to the removal of sandbank around the Gangcheon wetland. To compensate for the reduced function, it is necessary to expand the wetland area and to plant the various vegetation. The modified HGM used in this study can take into account the degree of improvement for replacement wetlands, so it can be used to efficiently manage the replacement wetlands. Also when the wetland is newly constructed, it will be very useful to assess the change of function of the wetland over time.

Assessment of A Dam-Wetland Functions Considering Hydrogeomorphic Characteristics (수문지형학적 특성을 고려한 댐습지의 기능평가)

  • Kim, Duck-Gil;Shin, Han-Kyu;Kim, Hung-Soo;Kim, Jae-Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1006-1010
    • /
    • 2010
  • 기존의 댐에 대한 연구는 이 치수 및 전력생산, 환경문제와 같은 댐의 전통적인 기능과 그 파급효과에 대한 연구가 주로 진행되어 왔으나 댐의 친환경적 활용방안 및 댐에 서식하고 있는 동 식물 및 생태계에 대한 연구는 상당히 미흡한 실정이다. 특히, 댐 상류지역 및 주변지역에 위치하고 있는 습지는 댐의 수질개선, 희귀 동 식물의 서식처 확보 등과 같은 생태보존, 위락 경관 생태공원 등의 기능을 제공할 수 있다. 이로 인해 댐유역에 위치하고 있는 자연습지의 보전뿐만 아니라 훼손에 따른 대체습지(인공습지)의 필요성이 점증되고 있는 실정이다. 따라서 본 연구에서는 현재 운영되고 있는 댐을 대상으로 댐이 지니고 있는 습지의 역할을 검토하고자 수문지형학적 방법인 HGM 방법을 이용하여 댐습지의 기능을 평가하였다. HGM 방법을 이용하여 댐습지의 기능평가를 수행하기 위해서는 대상습지와 기준습지가 필요하며, 본 연구에서의 대상지역은 댐 유역내 습지지역이 조성되어 있는 보령댐으로 선정하였으며, 기준지역은 보전이 잘 되어 있고 람사르 협약에 등록된 우포늪으로 선정하였다. HGM 방법에서의 기능 평가는 수문학적, 생지화학적, 식물 서식처 그리고 동물 서식처 측면으로 구분하여 대상지역과 기준지역을 비교하는 방식으로 이루어진다. 그 결과, 댐습지가 지니고 있는 습지의 기능이 자연습지에 비해 평균적으로 약 50%정도의 역할을 하는 것으로 나타났다. 이는 댐습지가 습지로서의 역할을 기능적으로 100% 수행을 못하고 있지만, 댐이 습지의 기능을 어느 정도의 수준까지는 수행을 하고 있음을 알 수 있다.

  • PDF

Assessment of Dam-Wetland Functions and Economic Value using HGM and CVM (HGM과 CVM을 이용한 댐습지의 기능 및 가치평가)

  • Kim, Duck-Gil;Yoo, Byong-Kook;Kim, Hung-Soo;Jang, Suk-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.187-187
    • /
    • 2012
  • 최근 환경에 대한 관심이 증대하면서 생물다양성, 홍수조절, 온실가스 저감 등 다양한 기능을 수행하는 습지에 대한 보전 및 복원을 위한 많은 노력들이 진행되고 있다. 습지 보전 및 복원을 위한 다양한 방안 중 하나가 댐 및 주변지역을 습지로 조성하여 활용하는 방안이라고 할 수 있으며, 이를 위해서는 댐 및 주변지역의 습지로서의 활용을 위한 특성 파악이 우선적으로 이루어져야 한다. 따라서 본 연구에서는 댐 주변지역에 조성된 습지와 댐 저수지 자체를 모두 포함하여 댐습지라고 정의하고, 댐습지가 지니고 있는 습지의 기능 및 경제적 가치를 추정하고자 하였다. 본 연구의 대상지역은 기준습지와 대상습지로 구분되며, 기준습지는 우포늪과 보령댐, 대상습지는 용담댐이다. 댐습지의 기능평가는 수문지형학적 특성을 고려하는 HGM(Hydrogeomorphic Method)을 이용하였으며, 가치평가는 조건부가치측정법(CVM)을 이용하였다. 기능평가 결과는 우포늪과 보령댐을 각각 기준지역으로 선정하였을 경우로 구분하여 나타낼 수 있다. 자연습지인 우포늪을 기준지역으로 선정하였을 경우에는 댐의 주목적과 관련이 있는 수문학적 기능이 높게 평가되었으나 습지 내에서 진행되는 생지화학적 기능과 다양한 식물 종에 대한 서식처로써의 기능은 다소 미흡한 것으로 평가되었다. 보령댐을 기준지역을 선정하였을 경우에는 일부 기능을 제외하고 대부분의 기능이 유사한 것으로 평가되었다. 조건부가치측정법을 이용한 용담댐의 경제적 가치평가는 댐습지 생태공원조성에 따른 훼손된 습지의 보호, 희귀생물종의 보호, 휴양 및 여가기능 제공을 주요인으로 설정하고 설문조사를 수행하여 가치를 추정하였다. 그 결과 용담댐의 총 가치는 우포늪의 가치와 비교하였을 때 우포늪의 35~41%에 해당하는 것으로 추정되었다. 본 연구에서 수행된 댐습지의 기능 및 가치평가 결과는 댐이 단순히 이 치수 측면으로만 이용되는 것이 아니라 생태학적으로도 활용성이 있다는 사실을 나타내고 있다. 이를 통해서 향후 댐의 친환경적 활용 방안 및 댐습지 관리 방안에 중요한 기초자료로 활용될 수 있을 것으로 판단되며, 댐에 대한 긍정적인 인식 증진에도 많은 도움이 될 것으로 판단된다.

  • PDF

Study on Assessment of Value and Functions of Dam-wetland(1) - Assessment of Functions by HGM : Focussing on Boryung Dam - (댐습지의 기능 및 가치평가 연구(1) - HGM을 이용한 기능평가 : 보령댐을 대상으로 -)

  • Shin, Han-Kyu;Kim, Duck-Gil;Kim, Jae-Geun;Kim, Hung-Soo;Ahn, Jae-Hyun;Yoo, Byong-Kook;Ahn, Kyung-Soo;Park, Doo-Ho
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.115-132
    • /
    • 2009
  • We defined a dam as a wetland for assessing wetland functions of man made dam. We compared Boryung dam with Upo wetland by HGM assessment. Hydrologic functions of Boryung dam are not good at short term water storage, but good at long term water storage. Biogeochemical functions of Boryung dam are about 50% of Upo wetland's functions. Boryung dam is a good wetland as a plant habitats and animal habitats. But functions as a habitat for birds were not good. With this study we look forward to making clear merits and demerits of Boryung dam’s functions as a wetland.

  • PDF

Assessment of Hwapo riverine wetland function using Hydrogeomorphic Approach (HGM을 이용한 화포천 습지의 기능평가)

  • Yin, Shanhua;Kim, Duck Gil;Kim, Hung Soo;Kwak, Jae Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.53-60
    • /
    • 2010
  • A wetland is an ecosystem which has high species diversity, rich nutritional substances and high productivity. In this study we used the HGM(Hydrogeomorphic) approach among various evaluation models for the assessment of the Hwapo riverine wetland function. HGM is a method which estimates the functional index of a study wetland by comparing it with a reference wetland. In this study the Woopo wetland which is registered in the Ramsar Convention was selected as a reference wetland to assess the functional index of the Hwapo wetland. As the results, we obtained the functional index values over 0.6 for most indices of the Hwapo riverine wetland. Therefore we found that the Hwapo riverine wetland shows relatively high functional index values comparing with the Woopo wetland and it has valuable hydrological, biochemical, plant habitat, and animal habitat functions.

Seasonal Variation of Bacterial Community Composition in Sediments and Overlying Waters of the South East Sea (동해 남부 해역 퇴적물과 저층 해수 세균 군집 조성의 계절적 변화 연구)

  • Choi, Dong Han;Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Noh, Jae Hoon;Park, Young-Gyu;Kang, Seong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • Bacteria play an important role in biogeochemical cycles in marine environments and their functional attributes in ecosystems depend primarily on species composition. In this study, seasonal variation of bacterial diversity was investigated by pyrosequencing of 16S rDNA in surface sediment and overlying seawater collected in the south East Sea, planned for the site of $CO_2$ sequestration by the carbon capture and storage (CCS) project. Gammaproteobacteria was dominant in the sediment in most seasons, whereas Alphaproteobacteria was a most dominant group in the overlying water. Thus, the bacterial diversity greatly differ between sediment and seawater samples. On the genus level, bacterial diversity between two habitats was also different. However, the number of genera found over 5% were less than 10 in both habitats and the bacterial community was composed of a number of diverse minor or rare genera. Elevation of $CO_2$ concentration during a $CO_2$ storage process, could result in change of bacterial diversity. Thus, this study will be very useful to access the effect of $CO_2$ on bacterial diversity and to predict functional change of the ecosystem during the process of CCS project.

Variations of DOC and Phenolics in Pore-water of Peatlands (이탄습지 공극수내 용존유기탄소와 페놀계열 물질의 변화도)

  • Freeman, Chris;Kim, Seon-Young;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.306-311
    • /
    • 2002
  • The amount and composition of dissolved organic carbon in wetlands are of great importance for their influence in secondary productivity, various biogeochemical processes, and aquatic ecosystem functions. In the present study, we measured variations of DOC and phenolics concentrations in pore-water of three northern peatlands (bog, fen, and swamp) over a 1-year period. General microbial activity (soil respirometry) and phenol oxidase enzyme activity were determined in the same peatlands to elucidate mechanisms underlying the differences in DOC and phenolics contents. The concentrations of DOC varied 25.5-45.4 (bog),29.2-71.4 (fen), and 13.5-87.6 (swamp) mg/L, while phenolic concentrations ranged 13.3-48.1 (bog), 7.6-29.5(fen) , and 4.9-30.8 (swamp) mg/L. The seasonal variations of DOC and phenolics in the swamp suggest that litterfall may be one of the most important factors for the DOC dynamics in such systems. The lowest microbial activity and phenol oxidase activity were found in the bog, which appears to Induce high percentage of phenolic contents in pore-water from bogs. It is also suggested that not only the DOC concentrations but also composition of DOC is of great importance in wetland biogeochernistry.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Improvement of Functional Assessment for Riverine Wetlands using HGM Approach (HGM 적용을 통한 하도습지의 기능평가 제고 방안 연구)

  • Yeum, Junghun;Kim, Taesung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • This study aims to suggest the framework of functional assessment on lotic area based on HGM(Hydrogeomorphic) approach targeting Wetland Protected Areas which are in the type of river channel, and to set up the fundamental data as a reference wetland. A total of 10 factors in terms of hydrology, biogeochemistry, plant habitat and animal habitat was analyzed based on the original approach of HGM and each Functional Capacity Index(FCI) of those factors was calculated. As the result of the modified FCI analysis, Damyang riverine wetland which is with artificial river bank had high values in the variables of area ratio of actual vegetation in the foreland, the number of plant per area and the area ratio of Salix spp., and those values were highly reflected on the factors of Nutrient Cycling(947,668.00), Species Richness and Maintain Characteristic Plant Communites(6.39) and Maintain Spatial Structure of Habitat(11.00). The Hanbando wetland which is keeping the natural bank had higher values in the variables of structural scale and species diversity, and the those values were highly reflected on the factors of Energy Dissipation(17,805.16), Subsurface Storage of Water(0.54), Removal of Imported Elements and Compounds(103,052.73), Maintain Characteristic Detrital Biomass(2.31), Maintenance of Interspersion and Connectivity (6.50), Species Diversity of Benthic macro-invertebrates(1.60) and Species Diversity of Vertebrate & Species Number of Other Animals(2.52/ 151.50), compared to the Damyang Riverine Wetland.

Assessment of the Wetland Soil Development in Constructed Wetlands using the Soil Properties of a Reference Wetland (기준습지 토양특성을 활용한 인공습지의 토양발달 평가)

  • Lee, Ja-Yeon;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • Changes in wetland soil properties of two constructed wetlands after their constructions were compared to those of a natural wetland to determine if they could be used for the evaluation of the success of constructed wetlands and the assessment of their functions. One natural wetland as a reference wetland and two constructed wetlands(treatment wetland and experimental wetland) with different contaminant inflow characteristics were selected for this study. Major physicochemical properties of wetland soil such as soil texture, water content, pH, CEC(cation exchange capacity), organic matter content, total nitrogen, and available phosphorus were monitored to investigate the effects of inundation and accumulation of organic matters and nutrients on the wetland soil development. There was a clear difference in soil texture between the natural wetland and the constructed ones, with the high sand content in the constructed wetlands as compared to the high clay content in the natural one. Gradual increases of silt and clay contents over time were observed in the constructed wetlands. The soil of the natural wetland was higher in water content and organic matter but lower in pH than those of the constructed wetlands. The pH of the constructed wetlands reached near neutral ranges after initial increase. CEC and nutrient concentrations of the constructed wetlands seemed to be affected mainly by outside inflows of organic matter and contaminants. Concentrations of organic matter and nutrients decreased over time in the experimental wetland where surface and deep soils with different characteristics were mixed during its construction, suggesting that changes in soil properties during wetland constructions may affect the development of wetland soils or wetland biogeochemistry. This study showed that changes in physicochemical properties of soils in constructed wetlands could be used to assess the success of constructed wetlands and their functions, and also the importance of reference wetlands for the appropriate assessment.