• Title/Summary/Keyword: 생장지수

Search Result 380, Processing Time 0.027 seconds

Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data (MODIS와 TOMS자료를 이용한 2001년 동북아시아 지역의 대기 에어로졸 모니터링)

  • 이권호;홍천상;김영준
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.77-89
    • /
    • 2004
  • The spatial and temporal variations of aerosol optical depth (AOD) over Northeast Asia regions have special importance in the aerosol research for estimation of aerosol radiative forcing parameters and climate change. Aerosol optical and physical properties (AOD and ${\AA}$ngstrom parameter) have been investigated by using Moderate Resolution Imaging Spectroradiometer (MODIS) and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) to estimate aerosol characteristics over the study region during 2001. Additionally, aerosol characteristics over the Korean peninsular during Aerosol Characteristic Experiment in Asia (ACE-Asia) Intensive Observation Period (IOP) have been investigated by using satellite observations. The results showed that the daily-observed aerosol data indicate seasonal variations with relatively higher aerosol loading in the spring and very low during the winter. The typical Asian dust case showed higher AOD (>0.7) with lower Angstrom exponent (<0.5) and higher AI (>0.5) that is mainly due to the composition of coarse particles in the springtime. Mean AOD for 2001 at 4 different places showed 0.65$\pm$0.37 at Beijing, 0.31$\pm$0.19 at Gosan, 0.54$\pm$0.26 at Seoul, and 0.38$\pm$0.19 at Kwangju, respectively. An interesting result was found in the present study that polluted aerosol events with small size dominated-aerosol loading around the Korean peninsular are sometimes observed. The origin of these polluted aerosols was thought to East China. Aerosol distribution from satellite images and trajectory results shows the proof of aerosol transport. Therefore, aerosol monitoring using satellite data is very useful.

Feeding Effects of Whole Crop Rice based TMR on Growth Performance and Carcass Characteristics of Hanwoo Steers (사료용 벼 위주 TMR 급여가 거세 한우의 생장 능력 및 도체 특성에 미치는 영향)

  • Kim, Jong Geun;Zhao, Guoqiang;Liu, Chang;Nan, Wei Sheng;Kim, Hak Jin;Kim, Kyoung Hoon;Ahn, Eok Geun;Min, Hyung-Gyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • This experiment was conducted to investigate the effect of whole crop rice (WCR) based TMR on growth performance and carcass characteristics of Hanwoo steers. WCR "Yeongwoo"was harvested at yellow ripen stage and ensiled for 60 days. The crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), in vitro dry matter digestibility (IVDMD) and total digestible nutrient (TDN) content was 8.4 %, 28.0 %, 53.8 %, 72.4 % and 66.8 %, respectively. For silage quality, pH was 4.37 and lactic and butyric acid content were 2.84 and 0.04 % in DM. Sixteen Hanwoo steers (8-mon-old) were allocated into either a control (commercial TMR) and WCR-TMR (WCR-based TMR) group. The TMR were fed according to the feeding stage phase: growing (Initiate~14 month), early fattening (15 month~21 month) and late fattening (22 month~30 month). The body weight of control group increased (P<0.05) until early fattening stage, but late growing stage of WCR-TMR group was higher than that of control (P<0.05). Average daily gain (ADG) was significantly greater (P<0.05) in WCR-TMR group (total 0.78 kg/head) compared to control (total 0.66 kg/head) except for late fattening stage. The marketing weight and carcass weight were higher in WCR-TMR group (726 vs 765 kg; 417.8 vs 450.4 kg). The back fat thickness (11.75 vs 13.00 mm), Longissimus dorsi area (88.00 vs $89.88cm^2$) and yield index (65.87 vs 64.30) were not different between the two groups (P>0.05) and also no difference in meat yield grade (A : B : C = 2 : 4 : 2). Marbling score (4.00 vs 4.13), meat color (4.75 vs 4.75), fat color (3.13 vs 2.88), texture (1.25 vs 1.50) and maturity (2.00 vs 2.00) were not significant difference between the two groups and meat quality grade ($1^{{+}{+}}:1^+:1:2:3=0:2:4:2:0$) was also not different. In conclusion, TMR feeding based on WCR silage showed superiority in carcass yield and ADG compared to control TMR. It is considered that the use of WCR for feed is a necessary option for the substitution of the imported forages and the government's policy for rice production adjustment.

Effects of Forage-Rice Cropping Systems on the Growth and Grain Quality of Early Maturing Rice Cultivars and Soil Chemical Properties in Paddy Fields in Southern Korea (사료작물-벼 작부체계가 조생종 벼의 생육과 미질 특성 및 토양의 화학적 특성에 미치는 영향)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.297-306
    • /
    • 2021
  • To select rice (Oryza sativa L.) cultivars suitable for forage-rice double cropping system, the growth and grain quality of four early maturing rice cultivars (Joun, Jopyeong, Haedamssal, and Unkwang), and the chemical properties of soils were investigated under single- (fallow-rice) and forage-rice double-cropping systems in paddy fields in Miryang, southern Korea. The soil where two forage crops [Italian ryegrass (Lolium multiflorum Lam.) and oat (Avena sativa L.)] were cultivated during winter had a slightly lower pH; an increase in total nitrogen (T-N), K, Ca, and Na contents; and a slight decrease in organic matter and available P2O5 contents, compared with the soil fallowed during winter. This shows that the chemical properties of paddy soils can be improved by winter forage cropping. At the heading stage, the culm length, panicle length, panicle number, and leaf color of all cultivars, except for Haedamssal, were generally higher under double-cropping than under single-cropping. For Haedamssal, the culm length and leaf color did not differ between the cropping systems, but the panicle length was slightly shortened and its panicle number increased under double-cropping. After harvest, the yield of milled rice decreased for all cultivars except Haedamssal, but increased in Haedamssal under double-cropping. The head rice rate was slightly higher under double cropping, particularly in Jopyeong and Haedamssal, than under single-cropping. The protein content of milled rice under double cropping was higher and its amylose content was similar or slightly lower compared to those of rice under single cropping, resulting in decreased Toyo values for rice under double-cropping. The pasting temperature did not differ significantly between the cropping systems. However, Haedamssal had a low pasting temperature but a high Toyo value under double cropping, compared to the other three cultivars, suggesting that its palatability is relatively high. Furthermore, panicle number increased and milled rice yield did not decrease, even under double cropping. Therefore, Haedamssal seems to be the best cultivar for paddy-based double cropping with forage crops.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

Biological Yielding Potential of Rice in Association with Climatic Factors in Yeongnam Region (영남지역 기상과 수도의 한계생산력 해석)

  • Kim, Soon-Chul;Lee, Soo-Kwan;Chung, Geun-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.259-270
    • /
    • 1985
  • Meteorological year variations for rice crop from 1973 to 1984 were compared by using air temperature and sunshine hour for nursery period, cooling index for reproductive stage and meteorological yield productivity index for ripening period. The most optimum transplanting date and heading date for crop yield based on real transplanting date-grain yield relationship or heading date-grain yield relationship, meteorological yield productivity index and actual results showed good agreement each other. Around May 26 for transplanting and August 10 for heading were the most optimum date in Indica/Japonica hybrid cultivars while these were about June 8 and August 23 for Japonica cultivars, respectively. On the other hand, theoretical late limiting heading date for safe ripening were August 20 for Indica/Japonica hybrid cultivars and August 30 for Japonica cultivars, respectively, for both methods, cumulative temperature method during ripening with 80% believable frequency and meteorological yield productive index method having 1000(kg/10a) yielding potential. Based on the yield forecast trial, the highest values of photosynthetic efficiency, 2.5%, and crop growth rate, 23g/㎡/day, were recorded during 30 days before rice heading. Considering the photosynthetic efficiency and solar radiation, the potential crop growth rate was more or less 30g/㎡/day and the biological grain yielding potential in a existing cultural practices was approximately 900-1000(kg/10a) in Milyang weather condition. To increase further yielding potential, either photosynthetic efficiency or harvest index or both should be improved by manipulating appropriate canopy architecture, plant spacing, fertilizer, chemical, etc.

  • PDF

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

Evaluation of Varietal Difference and Environmental Variation for Some Characters Related to Source and Sink in the Rice Plants (벼의 Source 및 Sink형질의 품종간차이와 환경변이의 평가)

  • Choi, Hae-Chun;Kwon, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.460-470
    • /
    • 1985
  • Experiments were carried out to evaluate the standard gravity in determining potential kernel size and to determine the effective sampling way by analyzing intra - and inter - plant variations for some source and sink characters using eleven semi-dwarf indica and three japonica cultivars including four semi-dwarf indica nearisogenic lines. Also, additional experiments were conducted to understand yearly variation and variety x year interaction effects for ten characters related to source and sink and to characterize the varietal difference of pre- and post-heading self-competition employing three parental varieties and their F$\sub$5/ progenies in 1982 and 1983. It is desirable to determine the potential kernel size by average kernel wight of rice grains showing above 1.15 specific gravity. There was significant difference in leaf area per tiller, spikelets and sink capacity per panicle among vigorous, intermediate and inferior tillers classified by differentiated order and vigorousness. Although it was difficult to find out any significant difference in grain-fill ratio, ratio of perfectly ripened grain, potential kernel size and sink/source ratio between vigorous and intermediate tillers, there was big difference between them and inferior one. The coefficients of variation within each tiller-group for some characters related to source and sink were larger with the order of vigorous tillers < intermediate one '||'&'||'lt; inferior one, and the average heritability of all characters, evaluated by the ratio of varietal variance (equation omitted) to total variance (equation omitted), were higher with the order of inferior tillers '||'&'||'lt; intemediate one '||'&'||'lt; superior one. Therefore, it is desirable to sample the vigorous tillers to represent the varietal difference of these traits. '82-'83 year variations of three parental cultivars were significant for all traits except for leaf area/tiller, panicles/hill, leaf area index and rough rice yield. The characters showing highly significant variance of variety x year interaction were growth duration from transplanting to heading, leaf area/tiller, sink/source ratio, sink capacity/panicle and grain yield. Generalized yearly response of three parental varieties (Suweon 264, Raegyeong, IR1317-70-l) and their F$\sub$5/ progenies on the 1st and 2nd principal components extracted from ten source and sink characters generally exhibited reduction in both source and sink. However, there were diverse variety x year interactions such as progenies showing similar reaction with their parents and intermediate or recombinational yearly response with little or considerable yearly movement on the four-dimensional planes of the two upper principal components between 1982 and 1983. Sink characters revealing highly significant border effect were grain-fill ratio, spikelets and sink capacity per panicle. Among them the latter two especially showed significant variety x border effect interaction. Self-competition characterized by relative weakness of inside plant's sink characters compared to the border one was more severe during the reproductive stage before heading than maturing stage. Though the larger sink capacity per panicle generally disclosed the severer self-competition, some lines (like Suweon 264) revealed severe self-competition with small sink capacity while a few others showed tender self-competition in spite of big sink capacity per panicle.

  • PDF

Studies on the Flowering and Maturity in Sesame (Sesamum indicum L.) IV. Effects of Foliage Clipping on the Seed Maturity (참깨의 개화.등숙에 관한 연구 IV. 적엽처리가 참깨의 등숙에 미치는 영향)

  • Lee, Jung-Il;Kang, Chul-Whan;Son, Eung-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.165-173
    • /
    • 1985
  • The objectives of the study were to investigate the effects of foliage clipping on photosynthesis and grain filling for branch and non branch types under the polyethylene film mulch and non mulch conditions in mono cropping and second cropping after barley in sesame (Sesamum indicum L.), and to improve poor grain filling at later flowering time utilizing these data. One thousand grain weight was more decreased in branch type than in non branch type, in polyethylene film mulch condition than in non mulch condition, and in second cropping after barley than in mono cropping by clipping lower part foliage. Twentyfive percent clipping of lower part foliage showed a little increase than no clipping. Matured grain rate also showed same tendency between branch and non branch type and between mono cropping and second cropping after barley as well as 1,000 grain weight except for polyethylene film mulch. Matured grain rate of 25% foliage clipping at 30 days after flowering in non branch type presented a little increase but decreased in branch type. Clipping of higher part leaves were so serious decrease of matured grain rate that higher part leaves at late maturing time have a major role in photosynthesis. Matured grain rate of foliage clipping at 10 days after flowering was decreased in all treatments. Chlorophyll content of higher part leaves at 50% lower part foliage clipping presented 39% increase compared to same positioned leaves of non treatment, and 66% increase by 50% higher part foliage clipping in lower part leaves. Photosynthetic activity was 58% more increased in 50% lower part foliage clipping than no clipping, but seriously decreased in 50% higher part foliage clipping. Therfore, photosynthates of remained lower part leaves could not only support their own demands, but also any contribution to translocation of photosynthates from source to sink at late maturing time. Harvest index was 28% increased in 25% lower part foliage clipping and 13% decreased in 50% higher part foliage clipping compared to no clipping. Leaf area was 48% increased in 50% lower part foliage clipping compared to the same positioned leaves of no clipping, and only 5% increased in higher part foliage clipping. Productivity by foliage clipping compared to non treatment, was highly decreased in branch type than in non branch type, in second cropping after barley than in mono cropping. Little difference was detected between polyethylene film mulch and non mulch conditions. Twenty five percentage of lower part foliage clipping on mono cropping of non branch type appeared 5% and 8% yield increase in each of polyethylene film mulch and non mulch conditions compared to no clipping, and all decreased in other treatments. Mean loss of productivity by foliage clipping at 10 days after flowering was serious than clipping at 30 days after flowering. As the result, contribution to photosynthesis of source at 10 days after flowering are larger than that at 30 days after flowering in sesame. Fifty percent lower part foliage clipping at 10 days after flowering showed so the most serious yield decrease that lower part leaves at that time were considered as the main role leaves for photosynthesis.

  • PDF

THE FOOD AND GROWTH OF THE LARVAE OF THE ARK SHELL ANADARA BROUGHTONI SCHRENCK (피조개의 먹이와 성장)

  • Yoo Sung Kyoo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1969
  • The larvae of the ark shell Anadare broughtoni(Schrenck) were grown at room temporature (approximately $20.4^{\circ}C$), and fed laboratory-cultured Cyclotella nana. The egg of the ark shell produced in the laboratory measured about $54.9\mu$ in diameter. The embryos gradually developed into larvae up to $110.8\mu$ shell length, $83.9\mu$ shell height and with shell breadth of $58.2\mu$ even in the absence of the algal food. Beyond this sire, however, the growth of the larvae was considerably retarded. The larvae showed better growth rate when they were fed the algal food two days after spawning, i. e., early straight-hinge stage. Daily rate of food consumption varies according to the larval sizes. But the rate increases considerably when the larvae begin to form umbos. In general the rate Is indicated by the following formula: $Y=0.0025161\;X^{2.76459}$. The growth experiments of the larvae indicate that the efficiency of food conversion was higher when fed centrifuged food. Regarding to the difference in the slopes of growth curve, centrifuged food showed better growth rate as compared to those grown with the non-centrifuged food. The smaller the larval size, the greater will be the difference in growth. The larvae began settling when they reathed 261.7 to $289.6\;{\mu}$ in shell length, 199.2 to $221.7\mu$ in shell height and 147.6 to $170.8\mu$ in shell breadth. The time which elapsed from spawning to the larval settlement was about 28 days. The mean growth of the larvae is indicated with regression line and exponential curve equations as follows. Regression line shell length. 94.3 to $133.9\mu$ : Y==85.22857+3.35000X 141.6 to $269.3\mu$: Y=10.83036X-36.05357 296.8 to $373.2\mu$ : Y=19.10000X-279.30000 shell height: 72.7 to $89.7\mu$ : Y=67.11429+2.15714X 108.4 to $206.4\mu$ : Y=8.31607X-27.45357 228.6 to $282.1\mu$: Y=173.46700+13.37500X shell breadth: 45.3 to $77.8\mu$ : Y=38.08510X+2.73570X 87.4 to $157.7\mu$: Y=5.77320X-5.99640 175.4 to $214.0\mu$: Y=19.65000X-114.13300 Exponential curve shell length. 94.3 to $373.2\mu$: Y=72.45 $e^{0.04697x}$ shell height: 72.7 to $282.1\mu$: Y=54,96 $e^{0.04720x}$ shell breadth: 45.3 to $214.0\mu$ : Y=39.82 $e^{0.04927x}$ The relationships between the shell length and shell height and between the shell length and shell breadth are indicated as follows- shell height: 72.7 to $98.7\mu$ : Y=12.87780+0.63817X 108.4 to $206.4\mu$ : Y=0.90220+0.76456X 228.6 to $282.1\mu$ : Y=25.02630+0.69156X shell breadth: 45.3 to $77.8\mu$:Y=0.81373Xx-31.18914 87.4 to $157.7\mu$ : Y=13.37549+0.53230X 175.4 to $214.0\mu$: Y=30.24328+0.49545X

  • PDF