• Title/Summary/Keyword: 생육지

Search Result 1,627, Processing Time 0.033 seconds

Stage Structure and Population Persistence of Cypripedium japonicum Thunb., a Rare and Endangered Plants (희귀 및 멸종위기식물인 광릉요강꽃의 개체군 구조 및 지속성)

  • Lee, Dong-hyoung;Kim, So-dam;Kim, Hwi-min;Moon, Ae-Ra;Kim, Sang-Yong;Park, Byung-Bae;Son, Sung-won
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.548-557
    • /
    • 2021
  • Cypripedium japonicum Thunb. is an endemic plant in East Asia, distributed only in Korea, China, and Japan. At the global level, the IUCN Red List evaluates it as "Endangered Species (EN)," and at the national level in Korea, it is evaluated as "Critically Endangered Species (CR)." In this study, we investigated the characteristics of the age structure and the sustainability of the population based on the data obtained by demographic monitoring conducted for seven years in the natural habitat. C. japonicum habitats were observed in 7 regions of Korea (Pochoen, Gapyeong, Hwacheon, Chuncheon, Yeongdong, Muju, Gwangyang), and 4,356 individuals in 15 subpopulations were identified. The population size and structure differed from region to region, and artificial management had a very important effect on the size and structural change of the population. Population viability analysis (PVA) based on changes in the number of individuals of C. japonicum showed a very diverse tendency by region. And the probability of population extinction in the next 100 years was 0.00% for Pocheon, 10.90% for Gwangyang, 24.05% for Chuncheon, and 79.50% for Hwacheon. Since the above monitored study sites were located within the conservation shelters, which restricted access by humans, unauthorized collection of C. japonicum, the biggest threat to the species, was not reflected in the individual viability. So, the risk of extinction in Korea is expected to be significantly higher than that estimated in this study. Therefore, it is necessary to reflect population information in several regions that may represent various threats to determine the extinction risk of the C. japonicum population objectively. In the future, we should expand the demographic monitoring of the C. japonicum population known in Korea.

Development of Stand Yield Table Based on Current Growth Characteristics of Chamaecyparis obtusa Stands (현실임분 생장특성에 의한 편백 임분수확표 개발)

  • Jung, Su Young;Lee, Kwang Soo;Lee, Ho Sang;Ji Bae, Eun;Park, Jun Hyung;Ko, Chi-Ung
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.477-483
    • /
    • 2020
  • We constructed a stand yield table for Chamaecyparis obtusa based on data from an actual forest. The previous stand yield table had a number of disadvantages because it was based on actual forest information. In the present study we used data from more than 200 sampling plots in a stand of Chamaecyparis obtusa. The analysis included theestimation, recovery and prediction of the distribution of values for diameter at breast height (DBH), and the result is a valuable process for the preparation ofstand yield tables. The DBH distribution model uses a Weibull function, and the site index (base age: 30 years), the standard for assessing forest productivity, was derived using the Chapman-Richards formula. Several estimation formulas for the preparation of the stand yield table were considered for the fitness index, and the optimal formula was chosen. The analysis shows that the site index is in the range of 10 to 18 in the Chamaecyparis obtusa stand. The estimated stand volume of each sample plot was found to have an accuracy of 62%. According to the residuals analysis, the stands showed even distribution around zero, which indicates that the results are useful in the field. Comparing the table constructed in this study to the existing stand yield table, we found that our table yielded comparatively higher values for growth. This is probably because the existing analysis data used a small amount of research data that did not properly reflect. We hope that the stand yield table of Chamaecyparis obtusa, a representative species of southern regions, will be widely used for forest management. As these forests stabilize and growth progresses, we plan to construct an additional yield table applicable to the production of developed stands.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Comparison of the Nutritional and Functional Compounds in Naked Oats (Avena sativa L.) Cultivated in Different Regions (재배지역 차이에 따른 쌀귀리 영양성분 및 기능성 성분 비교)

  • Ji-Hye Song;Dea-Wook Kim;Hak-Young Oh;Jong-Tak Yun;Yong-In Kuk;Kwang-Yeol Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.402-412
    • /
    • 2023
  • To cope with climate change, we compared the quality of naked oats (Avena sativa L.) cultivated in different regions. Naked oats were collected from domestic farms in different cultivation regions grouped as G1 and G2 for 3 years (2020-2022). The appearance, quality, and nutritional and functional compounds in the samples were assessed. In terms of appearance quality, the brightness and yellowness of the samples from the G1 region were significantly lower than those of the samples from the G2 region in 2020; however, no differences were observed between cultivation regions in the other 2 years. The results of testing the vitality of naked oats seeds showed that the electrical conductivity value was significantly lower in the samples from the G1 region than in those from the G2 region only in 2022. Among the nutritional components, moisture content was higher in the G2 region than in the G1 region over all 3 years, and the crude protein content was significantly higher in the G2 region than in the G1 region over all years. Carbohydrate content was significantly higher in the G1 region than in the G2 region in all 3 years and was inversely proportional to the crude protein content. The crude fat content tended to be significantly higher in the G1 region than in the G2 region, except in 2022. The levels of beta-glucan, a functional compound rich in naked oats, ranged between 3.4% and 4.2%, and except in 2020, there was no significant difference between cultivation regions. In addition, the content of avenanthramides, representative functional compounds that exist only in oats, was assessed. Over 2 years, in 2021 and 2022, the avenanthramide content was in the range of 2.4-20.7 ㎍/g and tended to be significantly higher in the G2 region than in the G1 region in both years. According to a survey of the average and minimum temperatures during the growing season of naked oats from 2020 to 2022, the average and minimum temperatures in January in the G2 region, which is the cultivation-limit area, were similar to those in Haenam in the G1 region. In conclusion, differences in nutritional and functional compounds were observed in naked oats grown in different cultivation areas. Therefore, considering the cultivation area of naked oats is expanding because of climate change, changes in the compounds that affect quality should be investigated.

A study on the ecological habitat and protection of natural Sorbus commixta forest at Mt. Seorak (설악산(雪嶽山)에 분포(分布)하는 마가목 천연림(天然林)의 생태환경(生態環境)과 보호(保護)에 관(關)한 연구(硏究))

  • Shin, Jai Man;Kim, Tong Su;Han, Sang Sup
    • Journal of Forest and Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1983
  • The purpose of this study was to elucidate the ecophysiological habitat of natural Sorbus commixta forest at Mt. Seorak. The results obtained were as follows: 1. The Sorbus commixta trees mainly distributed from 900m to 1,500m altitude. In there, the warm index(WI) was about 42$3.2{\times}10^3$ to $9.2{\times}10^3$, cation exchange capacity(CEC) was 13.7 to 19.5mg/100g, N content 0.21 to 0.39%, $P_2O_5$ content was 22.6 to 38.7ppm, and pH value was 5.6 to 5.8 respectively. 4. The upper crown trees in Sorbus commixta communities were Abies nephrolepis, Taxus cuspidata, Betula platyphylla var. japonica, Quercus${\times}$grosseserrata, Acer mono, Prunus sargentii, Carpinus cordata, Tilia amurensis, and the under crown trees were Rhododendron brachycarpum, Acer pseudo-sieboldianum, Thuja olientalis, Corylus heterohpylla, Philadelphus schrenckii, Rhododendron schlippenbachii, Rhododendron mucronulatum, and Magnolia sieboldii. 5. The stand densities were 1,156 trees/ha at 1,160m and 3,600 trees/ha at 1,300m respectively. The coverages by the DBH basal area were 0.37 at 1,160m and 0.31 at 1,300m respectively, and the vegetation coverages by the crown projection area were 2.04 at 1,160m and 1.61 at 1,300m respectively. 6. The light extinction coefficient(k) in Beer-Lambert's law, showed the distance, F(z), from top canopy to aboveground, was 0.17. 7. The water relations parameters of Sorbus commixta shoot were obtained by the pressure chamber technique. The osmotic pressure, ${\pi}_o$, at maximum turgor was -16.2 bar, and VAT pressure was 14.5bar. The osmotic pressure, ${\pi}_p$, at incipient plasmolysis was -19.4bar. The relative water contents at incipient plasmolysis were 83.1% ($v_p/v_o$) and 87.1%($v_p/w_s$;$w_s$, total water at maximum turgor). 8. The bulk modulus of elasticity(E) of shoot was about 69.6. The total symplasmic water to total water in shoot was 67.7%, and the apoplastic water to total water was 32.3%.

  • PDF

Relationships between Micronutrient Contents in Soils and Crops of Plastic Film House (시설재배 토양과 작물 잎 중의 미량원소 함량 관계)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.217-227
    • /
    • 2006
  • Micronutrient status in soils and crops of plastic film house and their relationship were investigated. Total 203 plastic film houses were selected (red pepper, 66; cucumber, 63; tomato, 74) in Yeongnam region and soil and leaf samples were collected. Hot-water extractable B and 0.1 N HCl extractable Cu, Zn, Fe, and Mn in soil samples and total micronutrients in leaf samples were analyzed. Contents Zn, Fe, and Mn in most of the investigated soils were higher than the upper limits of optimum level for general crop cultivation. Contents of Cu in most soils of cucumber and tomato cultivation were higher than the upper limit of optimum level, but Cu contents in about 30% of red pepper cultivation soils were below the sufficient level. Contents of B in most soils of cucumber and tomato were above the sufficient level but in 48% of red pepper cultivation soils B were found to be deficient. Micronutrient contents in leaf of investigated crops were much variable. Contents of B, Fe, and Mn were mostly within the sufficient levels, while in 71% of red pepper samples Cu was under deficient level and in 44% of cucumber samples Cu contents were higher than the upper limit of sufficient level. Contents of Zn in red pepper and cucumber samples were mostly within the sufficient level but in 62% of tomato samples Zn contents were under deficient condition. However, any visible deficiency or toxicity symptoms of micronutrients were not found in the crops. No consistent relationships were found between micronutrient contents in soil and leaf, and this indicates that growth and absorption activity of root and interactions among the nutrients in soil might be important factors in overall micronutrient uptake of crops. For best management of micronutrients in plastic film house, much attention should be focused on the management of soil and plant characteristics which control the micronutrient uptake of crops.

A Study on the Useful Trend of Plants Related to Landscape and How to Plant and Cultivate Through 'ImwonGyeongjaeji(林園經濟志)' ('임원경제지'를 통해 본 식물의 이용경향과 종예법(種藝法))

  • Shin, Sang-Sup
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.4
    • /
    • pp.140-157
    • /
    • 2012
  • The result of a study on the useful trend of plants related to landscape and how to plant and cultivate through 'ImwonGyeongjaeji Manhakji'of Seoyugu is as follows: First, 'ImwonGyeongjaiji Manhakji', composed of total 5 volumes (General, Fruit trees, vegetables and creeper, plants, others) is a representative literature related to landscape which described the names of plants and varieties, soil condition, how to plant and cultivate, graft, how to prevent the insect attack etc systematically. Second, he recorded the tree planting as Jongjae(種栽) or Jaesik(栽植), and the period to plant the trees as Jaesusihoo(栽樹時候), transplanting as Yijae(移栽), making the fence as Jakwonri(作園籬), the names of varietieis as Myeongpoom(名品), the suitable soil as Toeui(土宜), planting and cultivation as Jongye(種藝), treatment as Euichi(醫治), protection and breeding as Hoyang(護養), garden as Jeongwon(庭園) or Wonpo(園圃), garden manager as Poja(圃者) or Wonjeong(園丁). Third, the appearance frequency of plants was analyzed in the order of flowers, fruits, trees, and creepers and it showed that the gravity of deciduous trees was 3.7 times higher than that of evergreen trees. The preference of flower and trees, fruit trees and deciduous trees and broad-leaved trees includes (1) application of the species of naturally growing trees which are harmonized with the natural environment (2) Aesthetic value which enables to enjoy the beauty of season, (3) the trend of public welfare to take the flowers and fruits, (4) the use of symbolic elements based on the value reference of Neo-Confucianism etc. Fourth, he suggested the optimal planting period as January(上時) and emphasized to transplant by adding lots of fertile soil and cover up the seeds with soil as high as they are buried in accordance with the growing direction and protect them with a support. That is, considering the fact that he described the optimal planting period as January by lunar calendar, this suggests the hints in judging the planting period today. For planting the seeds, he recommended the depth with 1 chi(寸 : approx. 3.3cm), and for planting a cutting, he recommended to plant the finger-thick branch with depth 5 chi(approx. 16.5cm) between January and February. In case of graft of fruit trees, he described that if used the branch stretched to the south, you would get a lot of fruit and if cut the branches in January, the fruits would be appetizing and bigger. Fifth, the hedge(fence tree) is made by seeding the Jujube tree(Zizyphus jujuba var. inermis) in autumn densely and transplanting the jujube tree with 1 ja(尺 : approx. 30cm) interval in a row in next autumn and then binding them with the height of 7 ja(approx. 210cm) in the spring of next year. If planted by mixing a Elm tree(Ulmus davidiana var. japonica) and a Willow(Salix koreensis), the hedge whose branch and leaves are unique and beautiful like a grating can be made. For the hedge(fence tree), he recommended Trifoliolate orange(Poncitus trifoliata), Rose of sharon(Hibiscus syriacus), Willow(Salix koreensis), Spindle tree(Euonymus japonica), Cherry tree(Prunus tomentosa), Acanthopanax tree(Acanthopanax sessiliflorus), Japanese apricot tree(Prunus mume), Chinese wolf berry(Lycium chinense), Cornelian tree(Cornus officinalis), Gardenia(Gardenia jasminoides for. Grandiflora), Mulberry(Morus alba), Wild rosebush(Rosa multiflora) etc.

Effect of Low Temperature Treatment of Seed Bulb and Planting Date on Plant Growth and Yield in Garlic (마늘의 파종기별(播種期別) 저온처리(低溫處理)의 차이(差異)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Shin, Seong Lyon;Lee, Woo Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.49-69
    • /
    • 1988
  • In order to develop a cropping system that can produce garlic in the period of short supply from March to April, effects of low temperature treatment of seed bulbs and planting dates, starting date of low temperature treatment, days of low temperature treatment on plant growth, maturity and yield were studied in Southern strain, 'Namhae' and in Northern strain, 'Euiseong' of garlic (Allium sativum). The results obtained were as follows. In Sorthern strain, sprouting was significantly enhanced by low temperature treatment only in Sep. 14, and Sep. 29 plantings. Days to sprout were least in 30 days of low temperature treatment of Sep. 14 planting and in 45 days treatment of Sep. 29 planting. When considering on the beginning date of low temperature treatment, a marked difference was observed between treatments started before July 31 and after Aug. 15. Sprouting was most enhanced in 45 days low temperature treatment of Aug. 15 and Aug. 30 plantings. In Northern strain, sprouting was en hanced by low temperature treatment in planting from Sep. 29 to Nov. 13 and low temperature treatment for 60 days was most effective. Effect of low temperature treatment on early plant growth was observed in Sep. 14 and Sep. 29 plantings, but the effect on plant growth at intermediate stage or thereafter was observed in up to Oct. 29 plantings. Optimun days for low temperature treatment on growth enhancement was 45 and 60 days in Southern strain and 60 days in Northern strain in each planting dates. In Southern strain, the longer the low temperature treatment and the later the planting date the less the number of leaves developed. In Northern strain, normal leaves were not developed in plantings from Sep. 14 to Nov. 13. In Southern strain, clove differentiation and bulbing were earlist in 45 and 60 days treatment of Sep. 14, Sep. 29, and Oct. 14 planting initiated on July 31 and Aug. 15. In Northern strain, clove differentiation and bulbing were earlist in 60 days treatment of Oct. 14 planting initiated on Aug. 15 and Aug. 30. In treatment initiated later than above, longer the low temperature treatment the earlier the clove differentiation and bulbing in both Southern and Northern strains. The earlier the initiation date and the longer of low temperature treatment, the earlier bolting in southern strain. In Northern strain, bolting was most enhanced in 45 and 60 days of low temperature treatment initiated on Aug. 15 and Aug. 30. The longer the low temperature treatment in plantings thereafter, the earlier the bolting. The earlier the planting date garlic bulbs. Harvest date was earliest in 45 and 60 days low temperature treatment started from July 31 to Aug. 30 in Southern strain, and it was in 60 and 90 days low temperature treatment initiated from July 31 to Aug. 30 in Northern strain. Bulb weight was heaviest in 45 days low temperature treatment of Oct. 14 planting and next was in 45 days treatment of Sep. 29 planting in Southern strain. In Northern strain, bulb weight was heaviest in 60 days treatment of Oct. 14 planting and next was in 45 days treatment of Oct. 14 planting. When considered in the aspect of the beginning date of low temperature treatment, bulb weight was heaviest in 45 days treatment started on Aug. 30 in Southern strain and in 60 days treatment started on Aug. 15 in Northern strain. A high negative correlation between days to harvest and plant height on January 12, and a high positive correlation between days to harvest and days clove differentiation were observed. This indicates that enhanced plant growth and clove differentiation induced by low temperature treatment advanced the harvest date. A high negative correlation between bulb weight and days to clove differentiation, days to harvest suggests that the enhanced clove differentiation result and in heavier bulb weight. From the above results, it suggested that early crop of garlic can be harvested by planting at the period of Sep. 29 to Oct. 14 after 45 days of low temperature treatment of seed bulbs of Southern strain. Then harvest date can be shortened by 30 days compared to control and garlic can be harvested in early April.

  • PDF

Soil Physical Properties of Arable Land by Land Use Across the Country (토지이용별 전국 농경지 토양물리적 특성)

  • Cho, H.R.;Zhang, Y.S.;Han, K.H.;Cho, H.J.;Ryu, J.H.;Jung, K.Y.;Cho, K.R.;Ro, A.S.;Lim, S.J.;Choi, S.C.;Lee, J.I.;Lee, W.K.;Ahn, B.K.;Kim, B.H.;Kim, C.Y.;Park, J.H.;Hyun, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.344-352
    • /
    • 2012
  • Soil physical properties determine soil quality in aspect of root growth, infiltration, water and nutrient holding capacity. Although the monitoring of soil physical properties is important for sustainable agricultural production, there were few studies. This study was conducted to investigate the condition of soil physical properties of arable land according to land use across the country. The work was investigated on plastic film house soils, upland soils, orchard soils, and paddy soils from 2008 to 2011, including depth of topsoil, bulk density, hardness, soil texture, and organic matter. The average physical properties were following; In plastic film house soils, the depth of topsoil was 16.2 cm. For the topsoils, hardness was 9.0 mm, bulk density was 1.09 Mg $m^{-3}$, and organic matter content was 29.0 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.32 Mg $m^{-3}$, and organic matter content was 29.5 g $kg^{-1}$; In upland soils, depth of topsoil was 13.3 cm. For the topsoils, hardness was 11.3 mm, bulk density was 1.33 Mg $m^{-3}$, and organic matter content was 20.6 g $kg^{-1}$. For the subsoils, hardness was 18.8 mm, bulk density was 1.52 Mg $m^{-3}$, and organic matter content was 13.0 g $kg^{-1}$. Classified by the types of crop, soil physical properties were high value in a group of deep-rooted vegetables and a group of short-rooted vegetables soil, but low value in a group of leafy vegetables soil; In orchard soils, the depth of topsoil was 15.4 cm. For the topsoils, hardness was 16.1 mm, bulk density was 1.25 Mg $m^{-3}$, and organic matter content was 28.5 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.41 Mg $m^{-3}$, and organic matter content was 15.9 g $kg^{-1}$; In paddy soils, the depth of topsoil was 17.5 cm. For the topsoils, hardness was 15.3 mm, bulk density was 1.22 Mg $m^{-3}$, and organic matter content was 23.5 g $kg^{-1}$. For the subsoils, hardness was 20.3 mm, bulk density was 1.47 Mg $m^{-3}$, and organic matter content was 17.5 g $kg^{-1}$. The average of bulk density was plastic film house soils < paddy soils < orchard soils < upland soils in order, according to land use. The bulk density value of topsoils is mainly distributed in 1.0~1.25 Mg $m^{-3}$. The bulk density value of subsoils is mostly distributed in more than 1.50, 1.35~1.50, and 1.0~1.50 Mg $m^{-3}$ for upland and paddy soils, orchard soils, and plastic film house soils, respectively. Classified by soil textural family, there was lower bulk density in clayey soil, and higher bulk density in fine silty and sandy soil. Soil physical properties and distribution of topography were different classified by the types of land use and growing crops. Therefore, we need to consider the types of land use and crop for appropriate soil management.

Fertility and Rate of Fertilizer Application for Orchard Soils of Apple and Pear (사과 및 배 과수토양(果樹土壤)의 비옥도구분(肥沃度區分)에 의한 시비기준(施肥基準) 설정(設定))

  • Lee, Choon-Soo;Lee, Ju-Young;Lee, Yong-Jae;Shin, Jae-Sung;Han, Ki-Hak;Kim, Dong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.103-110
    • /
    • 1993
  • This study was made to evaluate the chemical properties of 481 farmers' orchard fields in An-Seong area. And the reasonable ferilizer rates were recommended utilizing the result of soil analysis. The results are summarized as follows : 1. As the soil fertility status of collected soil samples were evaluated on the basis of temporary optimal range for each soil chemical properties, 12.7 to 49.6% of the total 481 farmers' fields were range for soil improvement. 2. The contents of chemical component have a tendancy to decrease with depth gradually from surface to subsoil. 3. According to the relationship between the contents of soil component in subsoil and those in surface soil, the fertility condition of subsoil could be estimated on the basis of analysis data of surface soil. 4. The multiple regression equation for pear yield prediction to the organic matter and exchangable calcium contents in the soil were obtained. 5. Referring the average value, distribution ratio compared to the optimum level for each soil chemical properties and standard fertilizer rate, the soil fertility status could be categorized as "High" "Medium" and "Low". For each category, the recommended amounts for NPK and organic matter application were established. 6. The recommended rates through soul fertility diagnosis were less than farmer's dosage in the range 7.1~7.7 kg/10a for N, 0.8~11.5 kg/10a for $P_2O_5$, 7.1~19.9 kg/10a for $K_2O$ and 90~116 kg/10a for lime.

  • PDF