• Title/Summary/Keyword: 생성 데이터 증강

Search Result 147, Processing Time 0.026 seconds

Game System for Agent applied Artificial Intelligence based on Augmented Reality (증강현실 기반의 인공지능이 적용된 에이전트를 위한 게임 시스템)

  • Jang, yu-na;Park, sung-jun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.49-51
    • /
    • 2010
  • 스마트폰의 도입으로 인하여 증강현실이 널리 알려짐에 따라 대중들의 관심은 이에 집중되고 있으며 휴대성으로 인하여 모바일기기에서의 증강현실 연구가 하나의 흐름으로 자리 잡고 있다. 기존의 증강현실과 인공지능이 결합된 연구들은 주로 로봇공학이 많은 비율을 차지하고 있으며 게임에 접목된 연구들은 부족한 실정이다. 또한 인공지능이 적용된 에이전트들의 움직임을 위한 데이터들은 아직까지 사용자가 직접 입력해주거나 이를 인식하는데 마커를 사용하고 있다. 본 논문에서는 마커리스 추적 기술을 사용하여 생성한 데이터를 인공지능부분에서 사용하며 증강현실 기반의 인공지능이 적용된 에이전트를 위한 게임 시스템을 제안한다. 그리고 이를 아이폰 모바일 기기에서 구현하였으며 인식율, 정확도를 측정하여 본 시스템을 검증하였다.

  • PDF

Projection-based Mesh Generation for 3D Panoramic Virtual Environment Creation (3D 파노라믹 가상 환경 생성을 위한 투영기반 메쉬 모델 생성 기법)

  • Lee, Won-Woo;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.493-498
    • /
    • 2006
  • 본 논문에서는 3D 파노라믹 가상 환경 생성을 위한 투영기반 메쉬 모델 생성 기법을 제안한다. 제안된 메쉬 모델 생성 기법은 멀티뷰 카메라를 이용해 다수의 시점에서 얻은 실내 환경의 3D 데이터로부터 메쉬 모델을 생성한다. 먼저 미리 보정된 카메라 파라미터를 이용해 입력된 임의의 3D점 데이터를 여러 개의 하위 점군으로 분할한다. 적응적 샘플링을 통해 각 하위 점군으로부터 중복되는 점 데이터를 없애고 새로운 점군을 생성한다. 각각의 하위 점군을 Delaunay삼각화 방법을 통해 메쉬 모델링하고, 인접한 하위 점군의 메쉬들을 통합하여 하나의 메쉬 모델을 생성한다. 제안된 메쉬 모델링 방법은 점군의 분할을 통해 각 부분의 메쉬 모델을 독립적으로 생성하므로 실내 환경과 같은 넓은 영역의 모델링에 알맞다. 또한, 적응적 샘플링을 통해 3D 데이터가 갖는 깊이 정보의 특징을 보존하면서 메쉬 데이터의 크기를 줄인다. 생성된 가상 환경 모델은 가상/증강현실 응용 어플리케이션 등에 적용이 가능하다.

  • PDF

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.29-42
    • /
    • 2023
  • In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.

A layered-wise data augmenting algorithm for small sampling data (적은 양의 데이터에 적용 가능한 계층별 데이터 증강 알고리즘)

  • Cho, Hee-chan;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2019
  • Data augmentation is a method that increases the amount of data through various algorithms based on a small amount of sample data. When machine learning and deep learning techniques are used to solve real-world problems, there is often a lack of data sets. The lack of data is at greater risk of underfitting and overfitting, in addition to the poor reflection of the characteristics of the set of data when learning a model. Thus, in this paper, through the layer-wise data augmenting method at each layer of deep neural network, the proposed method produces augmented data that is substantially meaningful and shows that the method presented by the paper through experimentation is effective in the learning of the model by measuring whether the method presented by the paper improves classification accuracy.

Data Augmentation Techniques for Deep Learning-Based Medical Image Analyses (딥러닝 기반 의료영상 분석을 위한 데이터 증강 기법)

  • Mingyu Kim;Hyun-Jin Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1290-1304
    • /
    • 2020
  • Medical image analyses have been widely used to differentiate normal and abnormal cases, detect lesions, segment organs, etc. Recently, owing to many breakthroughs in artificial intelligence techniques, medical image analyses based on deep learning have been actively studied. However, sufficient medical data are difficult to obtain, and data imbalance between classes hinder the improvement of deep learning performance. To resolve these issues, various studies have been performed, and data augmentation has been found to be a solution. In this review, we introduce data augmentation techniques, including image processing, such as rotation, shift, and intensity variation methods, generative adversarial network-based method, and image property mixing methods. Subsequently, we examine various deep learning studies based on data augmentation techniques. Finally, we discuss the necessity and future directions of data augmentation.

Next POI Recommendation based on Graph Neural Network of Augmented Graph (증강 그래프 기반 그래프 뉴럴 네트워크를 활용한 POI 추천 모델)

  • Hyun Ji Jeong;Gwangseon Jang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.16-18
    • /
    • 2023
  • 본 연구는 궤적 데이터(trajectory data)를 대상으로 증강 그래프 기반의 그래프 뉴럴 네트워크를 활용하여 다음에 방문한 장소를 추천하는 모델을 제안한다. 제안 모델은 전체 궤적 데이터를 그래프로 표현하여 추출한 글로벌 궤적 플로우의 특성을 다음 방문할 POI 추천에 활용한다. 이때, POI 추천시 자주 발생하는 두 가지 문제를 추가로 해결함으로써 POI 추천의 정확도를 높이는 것을 목표로 한다. 첫 번째 문제는 추천 대상 궤적 데이터의 길이가 짧은 경우에 성능 저하가 발생한다는 것이다. 두 번째 문제는 콜드-스타트 문제이다. 기존 POI 추천 모델은 매우 적은 방문 기록만 가지는 사용자 또는 POI에 대해서는 매우 낮은 예측 성능을 보인다. 본 연구에서는 궤적 그래프에서 일부 엣지를 삭제하여 생성한 증강 그래프 기반의 궤적 플로우 특징 기반 모델을 제안함으로써 짧은 길이의 궤적 데이터 및 콜드-스타트 사용자/POI에 대한 추천 성능을 높인다.

Parametric Imaging with Respiratory Motion Correction for Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 호흡에 의한 흔들림을 보정한 파라미터 영상 생성 기법)

  • Kim, Ho-Joon;Cho, Yun-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • In this paper, we introduce a method to visualize the contrast diffusion patterns and the dynamic vascular patterns in a contrast-enhanced ultrasound image sequence. We present an imaging technique to visualize parameters such as contrast arrival time, peak intensity time, and contrast decay time in contrast-enhanced ultrasound data. The contrast flow pattern and its velocity are important for characterizing focal liver lesions. We propose a method for representing the contrast diffusion patterns as an image. In the methods, respiratory motion may degrade the accuracy of the parametric images. Therefore, we present a respiratory motion tracking technique that uses dynamic weights and a momentum factor with respect to the respiration cycle. Through the experiment using 72 CEUS data sets, we show that the proposed method makes it possible to overcome the limitation of analysis by the naked eye and improves the reliability of the parametric images by compensating for respiratory motion in contrast-enhanced ultrasonography.

Study on Knowledge Augmented Prompting for Text to SPARQL (Text to SPARQL을 위한 지식 증강 프롬프팅 연구)

  • Yeonjin Lee;Jeongjae Nam;Wooyoung Kim;Wooju Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.185-189
    • /
    • 2023
  • Text to SPARQL은 지식 그래프 기반 질의응답의 한 형태로 자연어 질문을 지식 그래프 검색 쿼리로 변환하는 태스크이다. SPARQL 쿼리는 지식 그래프의 정보를 기반으로 작성되어야 하기 때문에 기존 언어 모델을 통한 코드 생성방법으로는 잘 동작하지 않는다. 이에 우리는 거대 언어 모델을 활용하여 Text to SPARQL를 해결하기 위해 프롬프트에 지식 그래프의 정보를 증강시켜주는 방법론을 제안한다. 이에 더하여 다국어 정보 활용에 대한 영향을 검증하기 위해 한국어, 영어 각각의 레이블을 교차적으로 실험하였다. 추가로 한국어 Text to SPARQL 실험을 위하여 대표적인 Text to SPARQL 벤치마크 데이터셋 QALD-10을 한국어로 번역하여 공개하였다. 위 데이터를 이용해 지식 증강 프롬프팅의 효과를 실험적으로 입증하였다.

  • PDF

Data Augmentation Effect of StyleGAN-Generated Images in Deep Neural Network Training for Medical Image Classification (의료영상 분류를 위한 심층신경망 훈련에서 StyleGAN 합성 영상의 데이터 증강 효과 분석)

  • Hansang Lee;Arha Woo;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.4
    • /
    • pp.19-29
    • /
    • 2024
  • In this paper, we examine the effectiveness of StyleGAN-generated images for data augmentation in training deep neural networks for medical image classification. We apply StyleGAN data augmentation to train VGG-16 networks for pneumonia diagnosis from chest X-ray images and focal liver lesion classification from abdominal CT images. Through quantitative and qualitative analyses, our experiments reveal that StyleGAN data augmentation expands the outer class boundaries in the feature space. Thanks to this expansion characteristics, the StyleGAN data augmentation can enhance classification performance when properly combined with real training images.

Medical Parameter Extraction Using Time-Density Data in Contrast-Enhanced Ultrasound Image Sequence (조영증강 초음파영상에서 밀도변화 데이터를 이용한 진단 파라미터 추출 기법)

  • Lee, Jun-Yong;Jung, Joong-Eun;Kim, Ho-Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.7
    • /
    • pp.297-300
    • /
    • 2015
  • In medical ultrasonography, transit time and contrast enhancement patterns are considered as important parameters to analyze liver diseases. In many recent researches, time-intensity curves(TIC) have been used for calculating the transit time of the contrast agents. However, the intensity curve may include the variations which are caused by the micro-bubble effect of contrast agents. In this paper, we propose a complementary approach to diagnostic parameter extraction which utilizes a density information as well as the intensity data. The proposed technique improves the accuracy in extraction of the transit time and velocity of contrast agents for detection and characterization of focal liver lesions. Through the experiments using a set of clinical data, we show that the proposed methods can improve the reliability of the parametric image data.