• Title/Summary/Keyword: 생산성 성과

Search Result 20,076, Processing Time 0.054 seconds

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF

Effects of Vitamin $K_1$ on the Developmental and Survival Rate of Porcine In Vitro Fertilized Embryos (Vitamin $K_1$의 첨가가 돼지 체외 수정란의 발달과 생존율에 미치는 효과)

  • Park, Hum-Dai;Zhu, Yi-Chen;Park, Yong-Soo
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • The in vitro production of porcine embryos was essential to increase of blastocyst development rate and select of high quality blastocyst in early stage. There were a lot of reports about in vitro porcine embryo development, but there was no report about the selection of high quality embryos. Therefore, in this study, we investigated the effect of vitamin $K_1$ (vit $K_1$) on the development and survival rate of porcine in vitro fertilized embryos. When vit $K_1$ was treated for 24 hr at day 1 in vitro culture, blastocyst development rate in the control group ($35.5{\pm}3.2%$) was significantly lower compared to $1.0{\mu}M$, $3.0{\mu}M$, or $6.0{\mu}M$ groups ($14.5{\pm}4.3$, 0.0, or 0.0%; p<0.05). The survival rates of blastocysts at day 8 in $1.0{\mu}M$, $3.0{\mu}M$ or $6.0{\mu}M$ of vit $K_1$ treated groups ($22.2{\pm}2.9$, 0.0 or 0.0%) were significantly lower than that of the control group ($31.8{\pm}2.6%$; p<0.05). We were added at $1.0{\mu}M$, $3.0{\mu}M$ or $6.0{\mu}M$ vit $K_1$ for different durations of time at day 1 in vitro culture. The development rate and survival rate in the group of $1.0{\mu}M$ vit $K_1$ for 6 hr was $26.5{\pm}2.9%$ and $47.2{\pm}2.8%$, respectively, which were differed significantly in the group of 12 hr (p<0.05). In the group of $3.0{\mu}M$ vit $K_1$, the blastocyst development in control group was $36.4{\pm}3.1%$ but, the survival rate $41.7{\pm}3.2%$ in the group of 3.0 hr was significantly higher than that of the control group (p<0.05). In the group of $6.0{\mu}M$ vit $K_1$, the control group's the blastocyst development was $32.0{\pm}2.8%$ and the 0.5 hr supplement group's survival rates was $42.9{\pm}1.8%$ higher than other groups. We added vit $K_1$ at day 1, day 2, day 4 and day 6 of in vitro culture, on the based the results of supplemented concentration and duration. In the group of $1.0{\mu}M$ 6.0 hr addition, the blastocyst development rate of day 4 and the survival rate of day 2 were the highest in each group. In the groups of $3.0{\mu}M$ 3.0 hr addition or $6.0{\mu}M$ 0.5 hr addition, the blastocyst development ($59.5{\pm}4.1%$ and $50.0{\pm}3.6%$) and survival rates ($72.7{\pm}5.4%$ and $79.2{\pm}4.0%$) on day 4 were significantly higher than that of control and other experiment groups (p<0.05). Meanwhile, the number of cells in blastocysts that produced by vit $K_1$ supplementation was $53.4{\pm}5.8$, $49.4{\pm}3.8$ and $51.5{\pm}4.5$ respectively, which were significantly higher than that of $40.2{\pm}2.3$ in the control group (p<0.05). There was no difference of the number of apoptotic cells between control and experiment groups. In addition, gene expression of survival blastocyst, the Bax mRNA expression was similar between the control and the experiment groups. However, Bcl-xL mRNA expression's in the group of $6.0{\mu}M$ 0.5 hr on day 4 was highest among control and experiment groups (p<0.05). In this study suggested that the control of concentration, duration and time was effective on the survival and cell number of porcine blastocyst derived from in vitro. We are not know what the exact reasons of the effect of vit $K_1$ on embryo development and need to fur ther study. However, vit $K_1$ might be using the selection of high quality porcine blastocyst.

Prediction of fertilizer demands up to the year of 2,000 from agronomic view points - Review and Discussion - (농경학적(農耕學的) 입장(立場)에서 본 서기(西紀) 2,000년(年)까지의 비료수요(肥料需要) 전망(展望) - 종합고찰(綜合考察) -)

  • Hong, Chong-Woon;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.3
    • /
    • pp.211-220
    • /
    • 1976
  • The objective of this paper is to summarize and disicuss the results of studies for the prediction of fertilizer demands up to the year of 2000, from the agromic biew points. 1. The approximated demands of fertilizers figured out from the view point of nutrient requirement and fertilizer efficiency of major crops are 1,162,000M/T (N;554,100 M/T, $P_2O_5$; 360,100 M/T and $K_2O$, 247,000 M/T) at 1980, 1,471,400 M/T (N: 694,800 M/T, $P_2O_5$;465,400M/T and $K_2O$ ;311,200 M/T) at 1990 and 1,764,00 M/T (N;812,500 M/T, $P_2O_5$; 592,300 M/T and $K_2O$;359,200 M/T) at 2000${\cdots}{\cdots}$ (Approximation I) 2. Upon the basis of approximation on the yield levels of major crops per unit area and on the expansion of arable land, the demands of fertilizers at the years of 1980, 1990 and 2000 are predicted as 1,149,300 M/T (N;603,700 M/T $P_2O_5$; 305,500 M/T and $K_2O$, 240,100 M/T) 1,551,100 M/T(N:814,700M/T, $P_2O_5$;412,300 M/T and $K_2O$;324,00 M/T) and 2,253,800 M/T (N;1,183,800M/T, $P_2O_5$; 586,400M/T and $K_2O$, 470,900 M/T), respectively${\cdots}{\cdots}$(Approximation II) 3. When the recent relationships between the increases in yeid of major crops and the amounts of fertilizers for those crops per unit area are brought into consideration for the estimation of future demands of fertilizers, the predicted demands at the years of 1980, 1990 and 2000 are 1,287.600 M/T (N;677,100 M/T, $P_2O_5$; 342,000 M/T, and $K_2O$;268,500 M/T), 2,085,600M/T (N;1,096,700 M/T, $P_2O_5$;533,900 M/T, and $K_2O$;435,000 M/T and 3,380,600 M/T (N;1,777,800M/T, $P_2O_5$;897,800M/T and $K_2O$;705,000M/T) respectively (Approximation III) 4. Approximation I will be closer estimate under such condition that only rice will maintain self suficiency and other food crops will be covered by domestic production by around 50 percent, which is not desirable situation. 5. When higher self suficiency leveles of major food crops are sought through the introduction of improved varieties and expansion of cropping area and arable land by increased land utilization and reclamation of hillside land and tidal land, the Approximations II and III will become close to reality, If improved fertilizers and improved method of fertilizer applications are widely applied at the farmers fields to increase the fertilizer efficiency the former will be closer figure, if not, the latter may be better estimates.

  • PDF

Current and Future Operation of Menu Management in the School Foodservices of Chungbuk (1) - Menu Planning - (충북지역 학교급식 영양(교)사의 식단관리 운영실태 및 개선방안(1) - 식단계획 -)

  • Ahn, Yoon-Ju;Lee, Young-Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1118-1133
    • /
    • 2012
  • This research aimed to suggest an efficient improvement plan for school food services by investigating the operating situation and recognition of menu management in school food services for school food service dietitians (and nutrition teachers) in Chungbuk. A total of 328 questionnaires were distributed to school food service dietitians (and nutrition teachers) in Chungbuk by e-mail in September, 2010. A total of 265 questionnaires (80.8%) were used for the analysis. The highest allocation of nutrients and calories per day in school food services was 1:1.5:1.5 (breakfast : lunch : dinner) (38.5%). The reasoning for applying a flexible allocation of nutrients and calories per day was 'considering the ratio of students who do not eat breakfast' (59.2%). And the way to apply the flexible allocation for nutrients and calories per day was 'by agreement from the school operating committee in arbitrary data without situation surveys' (86 respondents, 49.4%), and 'by agreement from the school operating committee in analysis data through situation surveys' (80 respondents, 46.0%). The operational method of standardized recipes was 'cooking management site of national education information systems' (87.5%) and the items included in standardized recipes were menu name, food material name, portion size, cooking method, nutrition analysis, and critical control point in HACCP. The main reason for not utilizing all items of a cooking management site of the national education information system was 'no big trouble in menu management even though it is used partly (29.1%). In addition, the highest use of standardized recipe was for 'maintaining consistency of food production quantity' (74.0%).

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF