• Title/Summary/Keyword: 생분해성 플라스틱

Search Result 75, Processing Time 0.024 seconds

Trends in Development and Marketing of Degradable Plastics (분해성 플라스틱의 개발 및 시장 동향)

  • You, Young-Sun;So, Kyu-Ho;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.365-374
    • /
    • 2008
  • Plastics are comparatively new polymeric materials that are manufactured by chemical synthesis, making them different from natural materials such as wood, paper, stone, metal, and glass. Due to a wide range of properties, including processing capabilities and duration, plastics have become rapidly ubiquitous, being used in all industries, and have improved our quality of life. However, it is true that plastics cause environmental contamination problems that have become important social issues, such as environmental hormone leakage due to incineration or reclamation, difficulty in securing reclamation sites, and deadly poisonous dioxin generated by the incomplete incineration of waste plastic materials. To solve these problems, it is urgent to develop and commercialize degradable plastics that can be stably and conveniently used just as general plastics, and that are easily decomposed by sunlight, soil microbes, and heat generated from reclaimed land after use. This review presents recent worldwide trends in the development and marketing of environmentally degradable plastics.

Recent Trends in The Production of Polyhydroxyalkanoates Using Marine Microorganisms (해양 미생물에 의한 폴리하이드록시알카노에이트 생산의 최근 동향)

  • Seon Min Kim;Hye In Lee;Hae Su Jeong;Young Jae Jeon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.680-691
    • /
    • 2023
  • Peak oil, climate change, and microplastics caused by the production and usage of petroleum-based plastics have threatened the sustainability of our daily life, and this has emerged as a recent global issue. To solve this global issue, the production and usage of biodegradable eco-friendly bioplastics such as polyhydroxyalkanoates (PHAs) has been suggested as an alternative. Therefore, in this review, the present status of global PHA manufacturers, the advantages of the production of PHAs using marine-origin microorganisms (with their productivity potential) and further required research and development strategies for cost-competitive production of PHAs using marine-based microorganisms were investigated. In this review, PHAs produced from marine microorganisms were found to have similar physical properties to petroleum-based plastics but with several advantages that can reduce the costs of PHA production. Those advantages include, seawater used in the medium preparation step, and osmotic-based cell lysis technology used in the separation and purification steps. However, the PHA productivities from marine microorganisms showed somewhat lower efficiencies than those from the commercial strains isolated from terrestrial environments. In order to solve the problem, further research strategies using synthetic microbiology-based technology, the development of long-term continuous culture technology, and solutions to improve PHA efficiency are required to meet future market demands for alternative bioplastics.

Recent Research Trends in Eco-Friendly Materials for Solving Environmental Microplastic Problems (미세플라스틱 문제 해결을 위한 친환경소재 연구동향)

  • Moon, Sung Min;Jeon, So Hui;Eom, Taesik;Shim, Bong Sup
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.2
    • /
    • pp.25-43
    • /
    • 2019
  • 미세플라스틱으로 인한 환경생태오염이 심화함에 따라, 기존 난분해성 플라스틱을 대체할 수 있는 친환경 소재에 관심이 높아지고 있다. 또한 석유 기반 자원의 고갈 및 이산화탄소 배출로 인한 온난화 환경문제 등으로 기존 석유계 플라스틱 소재를 대체 보완하는 친환경 천연소재 개발의 사회적 요구는 더욱 커지고 있다. 이에, 생분해가 가능한 천연자원으로부터 다양한 물리 화학적 엔지니어링 기능성을 추가하여 플라스틱의 환경문제를 극복하려는 시도들이 활발히 진행되고 있다. 본 기고에서는 나노셀룰로오스, 생분해성 고분자, 멜라닌 소재를 중심으로 친환경 기능성 천연소재의 최신 연구 동향을 소개하고, 이의 기존 합성 플라스틱 대체응용 방안의 가능성을 탐색한다.

Application Study and Pulp Separation Method by see weeds (해조류 Pulp 분리방법 및 응용연구)

  • Ryu, Soung-Ryual
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.685-693
    • /
    • 2015
  • In this study, we found that it is necessary to use the relatively new resource from seaweed extracts to extract and process pulp and create a local brand that can contribute to the local fishermen, development of new bio material, establishment of natural infrastructure, and acquisition of foreign investment. This study's seaweed pulp separation process is very overwhelming as seaweed is a compound of glycoside and polysaccharide. Nevertheless, we intend to develop a purification process and introduce applied technology to explore a new applied technology of pulp process. Once this technology is fully developed and mass produced, it would contribute to greater exports and increasing income level for the local fishermen. The ultimate goal of this study is to gather technical data from the first and second years of application, apply seaweed pulp to increase bio effect, and develop new functional bio-plastic packaging material, raw material, and samples with special characteristics of high molecules.