• Title/Summary/Keyword: 생물학적 환원

Search Result 132, Processing Time 0.394 seconds

Isolation and characterization of microorganisms biological damage of Dongchundang (동춘당 생물학적 가해 미생물의 분리 및 특성)

  • Lee, Jeung-Min;Kim, Young-Hee;Hong, Jin-Young;Jo, Chang-Wook;Kim, Soo Ji;Seo, Min Seok
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.111-119
    • /
    • 2014
  • Microorganisms were isolated from Dongchundang(wooden cultural heritage) with PDA medium culture. Nineteen species shows the cellulolytic activity. Methylobacterium sp. was the most active in cellulose degradation. The growth curve and pH were measured during incubation of the microorganism for 72 hours. The pH was increased with the increasing of microbial growth. The degree of cellulose degradation was determined with the amount of reducing sugar by use of dinitrosalicylic acid (DNS) method. The amount of reducing sugar was decreased after 45 hours. As a results, It should suggested that wood component were deteriorated by Methylobacterium sp..

  • PDF

Biological Synthesis of Au Core-Ag Shell Bimetallic Nanoparticles Using Magnolia kobus Leaf Extract (목련잎 추출액을 이용한 Au Core-Ag Shell 합금 나노입자의 생물학적 합성)

  • Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.98-102
    • /
    • 2010
  • Magnolia kobus leaf extract was used for the synthesis of bimetallic Au core-Ag shell nanoparticles. Gold seeds and silver shells were formed by first treating aqueous solution of $HAuCl_4$ and then $AgNO_3$ with the plant leaf extract as reducing agent. UV-visible spectroscopy was monitored as a function of reaction time to follow the formation of bimetallic nanoparticles. The synthesized bimetallic nanoparticles were characterized with transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS), and X-ray photoelectron spectroscopy(XPS). TEM images showed that the bimetallic nanoparticles are a mixture of plate(triangles, pentagons, and hexagons) and spherical structures. The atomic Ag contents of the bimetallic Au/Ag nanoparticles determined from EDS and XPS analysis were 34 and 65 wt%, respectively, suggesting the formation of bimetallic Au core-Ag shell nanostructure. This core-shell type nanostructure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

Study on Organic Material Used in Bioreactor for the Treatment of Acid Mine Drainage (산성 광산 폐수 처리용 생물반응기에 사용되는 유기물의 연구)

  • 김경호;나현준;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The change of industrial structure has brought the sharp declination of mine products, and has made many mines closed, which results in environmental pollution by untreated acid mine drainage(AMD). AMD with low pH and high concentration of heavy metals could severely destroy the ecosystem. Many researches have been carried out for the treatment of AMD. In this study, we have treated AMD with oak compost, mushroom compost, sludge cake and cow manure which usually used in AMD treatment systems, and compared the capability of each organic matter. Cow manure and oak compost have been most effective among 4 organic materials. Oak compost removed the heavy metals by ion exchange between Ca-rich particles and soluble heavy metal ions. It also captured the heavy metals using bound functional groups like -OH and -COO-. Sulfate reducing bacteria existing in the cow manure removed effectively heavy metals by producing metal sulfide compound. Therefore, it is effective to use both organic materials in mixture on the treatment of AMD.

  • PDF

Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana (애기장대 peroxiredoxins (Prxs)과 sulphiredoxin1 (Srx1)의 작용기작)

  • Kim, Min-Gab;Su'udi, Mukhamad;Park, Sang-Ryeol;Hwang, Duk-Ju;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1777-1783
    • /
    • 2010
  • Plants generate reactive oxygen species (ROS) as a by-product of normal aerobic metabolism or when exposed to a variety of stress conditions, which can cause widespread damage to biological macromolecules. To protect themselves from oxidative stress, plant cells are equipped with a wide range of antioxidant proteins. However, the detailed reaction mechanisms of these are still unknown. Peroxiredoxins (Prxs) are ubiquitous thiol-containing antioxidants that reduce hydrogen peroxide with an N-terminal cysteine. The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. Recently identified small protein sulphiredoxin (Srx1), which is conserved in higher eukaryotes, reduces cysteine.sulphinic acid in yeast peroxiredoxin. Srx1 is highly induced by $H_2O_2$-treatment and the deletion of its gene causes decreased yeast tolerance to $H_2O_2$, which suggest its involvement in the metabolism of oxidants. Moreover, Srx1 is required for heat shock and oxidative stress induced functional, as well as conformational switch of yeast cytosolic peroxiredoxins. This change enhances protein stability and peroxidase activity, indicating that Srx1 plays a crucial role in peroxiredoxin stability and its regulation mechanism. Thus, the understanding of the molecular basis of Srx1 and its regulation is critical for revealing the mechanism of peroxiredoxin action. We postulate here that Srx1 is involved in dealing with oxidative stress via controlling peroxiredoxin recycling in Arabidopsis. This review article thus will be describing the functions of Prxs and Srx in Arabidopsis thaliana. There will be a special focus on the possible role of Srx1 in interacting with and reducing hyperoxidized Cys-sulphenic acid of Prxs.

An Experimental Study on the Restoration Creation of Tidal Flats (간석지 생태계 복원에 관한 실험적 연구)

  • Lee, Jeoung-gyu;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • Seven constructed and three natural tidal flats were compared to evaluate state-of- the-art of creation and restoration technology for tidal flats. parameters studied were physico-chemical and biological characteristics of soils and rate of respiration. The natural tidal flats had higher contents of silts, nitrogen and organic matter compared to the constructed ones. The natural ones had reductive Bone below 2 cm whereas the constructed ones had oxidative zone from the surface to below 20 cm. The bacterial population in the soil of the constructed tidal flats was one to two magnitudes lower than that in the natural ones. Biomass of macrobenthos and microbial respiration rate, however, were not different significantly between the natural and the constructed tidal flats. The purification capacity by diatom+bacterial+meiobenthos and macrobenthos in the constructed tidal flats was higher than that in the natural ones due to deeper permeable layer for purification in the constructed tidal flats. There was an exceptional constructed tidal flat with similar physico-chemical and biological characteristics to natural ones. Shearing stress to the surface of the tidal flat by the flow of seawater was as low as that of natural ones. These hydraulic conditions seemed to be a controlling factor on structures and functions of tidal flats. The control of hydraulic condition seemed to be one of the most important factors to create natural-like tidal flats.

  • PDF

Studies on Varietal Differences in Growth, Nodulation and Nitrogen Fixation in Soybeans, Glycine max (L.) Merrill I. Changes in nitrogen fixation activity and dry weight of plant organs during reproductive stage (콩의 생육, 근류형성, 질소고정에 있어서 품종간 차이 I. 등숙단계별 각 기관 건물중 및 질소고정활성의 경시적 변화)

  • Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.323-329
    • /
    • 1987
  • Five soybean varieties of two early maturing Karikei73 and SS 79168, and three late maturing Tohoku76, Baegunkong and Jangbaegkong were used and evaluated in the study. Of the varieties examined, Karikei73 was characterized by the delayed leaf senescence. The varieties were planted in the pots of 1/3500 a filled with volcanic ash soil at the experimental fields of the National Institute of Agrobiological Resources in Japan. Major agronomic characteristics including the activity of nitrogen fixation for root nodules during the grain filling period were measured. Measurements during the stages were followed by the stage of development descriptions for soybeans made by Fehr and Carviness (1977). The acetylene reducing activity (ARA) per dry weight of root nodule measured using acetylene reduction assays was the highest at R4-R4.5 with decreasing trends thereafter for the early matruing varieties, while it continuously increased up to R6 but decreased rapidly thereafter for the late maturing varieties. The dry weights of root nodules and all parts of the host plant at each stage checked were greater in the late maturing varieties being the same in ARA per pot.

  • PDF

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

Uranium Removal by D. baculatum and Effects of Trace Metals (국내 지하수에 서식하는 바쿨라텀(baculatum)에 의한 용존우라늄 제거 및 미량 중금속 원소들의 영향)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Removal of dissolved uranium by D. baculatum, a sulfate-reducing bacterium, and effects of trace metals such as manganese, copper, nickel, and cobalt were investigated. Total concentrations of dissolved uranium and trace metals were used by $50\;{\mu}M$ and $200\;{\mu}M$, respectively. Most dissolved uranium decreased up to a non-detectable level (< 10 ppb) MS during the experiments. Most of the heavy metals did nearly not affect the bioremoval rates and amounts of uranium, but copper restrained microbial activity. However, it is found that dissolved uranium rapidly decreased after 2 weeks, showing that the bacteria can overcome the copper toxicity and remove the uranium. It is observed that nickel and cobalt were readily coprecipitated with biogenic mackinawite.

Geochemical characteristics of sediment, pore water, and headspace gas in the Ulleung Basin (울릉분지 퇴적물, 공극수 및 공기층 가스의 지화학적 특징)

  • Kim, Ji-Hoon;Park, Myong-Ho;Ryu, Byong-Jae;Lee, Young-Joo;Jin, Young-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.373-376
    • /
    • 2006
  • 본 연구의 목적은 동해 울릉분지의 제4기 후기 퇴적물 내의 유기물, 공극수와 메탄의 특징 및 상호작용을 규명하는데 있다. 연구지역에서 채취한 코어퇴적물을 원소 분석한 결과 C/N 및 C/S 비(wt. %)는 퇴적물 내 유기물이 주로 해양조류 기원을 가지고, 일반적인 해양 또는 정체 환경에서 퇴적되어Tdam을 지시한다. 그러나 Rock-Eval 열분석 결과는 유기물 기원이 육상식물(Type III)이고, 열적 성숙단계가 미성숙단계임을 보여준다. 이러한 원소분석과 열분석간의 상반된 결과는 유기물이 침강하는 동안 또는 퇴적 후 이루어진 강한 산화작용에 기인한 것으로 추정된다. 퇴적물 내 공극수의 황산염 농도가 퇴적물의 심도가 증가할수록 감소하며, 감소하는 경향은 크게 두 가지 (적선성, concave down)로 나누어진다. 이는 모든 코어에서 황산엽 환원작용이 일어나고 있음을 지시한다. 또한 직선선의 황산엽농도 구배는 무산소 메탄 산화작용(AMO)의 전형적인 특징이다. 황산염 농도의 수직적 구배를 이용하여 SMI(sulfate-methane interface) 심도를 계산하면, 남부울릉분지의 코어 (03GHP-01, 03GHP-02; <3.5mbsf)가 북부울릉분지 코어(01GHP-05, 01GHP-07, 03GHP-03, 03GHP-04, 03GHP-05; > 6mbsf)보다 낮은 값을 갖는다. 위와 같은 SMI 심도차는 메탄의 상부 분산량과 밀접한 관련있는 것으로 추정된다. 메탄가스의 탄소 안정동위원소 $({\delta}^{13}C)$ 분석값들은 -83.5%o에서 -69.5%o의 범위를 가지고 있고, 이산화탄소 환원작용($CO)_2$ reduction)에 의한 생물 (biogenic) 기원임을 지시한다.

  • PDF

Evaluation of the Effect of Mine Drainage on the Aquatic Environment by Quantitative Real-time PCR (실시간 정량 중합효소연쇄반응을 이용한 광산 배수의 수계 영향 평가)

  • Han, Ji-Sun;Seo, Jang-Won;Ji, Won-Hyun;Park, Hyun-Sung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.121-130
    • /
    • 2010
  • Metals and sulfate can be considerably dissolved at low pH condition in the acid mine drainage(AMD) and it would make an environmental problems. There are only few of acid mine drainage treatment systems in Korea which are operating, but these still have an effect on the surrounding stream. In this study, quantification of indicator microorganisms was conducted to judge the environmental impact of AMD on microflora by quantitative real-time PCR in the drainage samples of four mines and the water samples of each surrounding stream. Two species of iron reducing bacteria(Rhodoferax ferrireducens T118 and Acidiphilium cryptum JF-5) were selected for indicator bacteria based on 16S rRNA cloning analysis, and sulfate reducing bacteria(Desulfosporosinus orientus), iron and sulfur oxidizing bacteria(Acidothiobacillus ferrooxidans) and iron oxidizing bacteria(Leptosprillum ferrooxidans) were included into indicator since these were found in the previous studies on the mining area. Thereafter, the comparative analysis of four mines were established by the microbiological variation index and it was determined that the biological environment effect of AMD is highest in Samtan mine which doesn t contain treatment system by the value.