• Title/Summary/Keyword: 생물학적탈질

Search Result 89, Processing Time 0.028 seconds

Nitroglycerin Biodegradation under Denitrification Conditions and Corresponding Microbial Community Shifts upon Acclimation (탈질조건에서 nitroglycerin의 생물학적 분해 동역학 및 미생물 군집 변화)

  • Choi, Wonchul;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.42-54
    • /
    • 2019
  • Biodegradation of an explosive compound, glyceryl trinitrate (GTN), was studied with a denitrifying microbial culture grown in a sequencing batch reactor and a GTN acclimated denitrifying culture. The GTN acclimated culture, which were fed on GTN for 1 month, degraded GTN regioselectively via denitration on C1 position as compared to C2 position denitration by denitrifying culture that has never been exposed to GTN. Accumulation of two isomeric glyceryl dinitrates (GDNs) in both culture medium suggests that GDN denitration is the rate-limiting step in GTN biodegradation. The first order GTN degradation rate normalized to cell concentration of the acclimated culture was calculated to be 0.045 (${\pm}0.002$) L/g-hr. Increasing concentration of electron acceptor(nitrate) resulted in discouraged GTN degradation. According to microbial community analysis, prolonged GTN exposure resulted in 25% increase in the genus level of the GTN acclimated culture with the disappearance of two dominating denitrifying microbial species of Methyloversatilis universalis and Hyphomicrobium zavarzinii in the denitrifying culture.

Assessing the Role of Citric Acid in Denitrification of Nitrate in Slow-releasing Carbon Source Tablet (완효성 탄소원 정제 내 citric acid의 생물학적 탈질소화 영향)

  • Han, Kyungjin;Yeum, Yuhoon;Kim, Young;Kwon, Sooyoul
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2022
  • This study utilized citric acid as a floating agent in biological denitrification process and assessed its role under different carbon supplying conditions. Several microcosm tests including citric acid active (CAA), precipitating tablet release active (PTRA) and floating tablet release active (FTRA) were conducted to evaluate nitrate denitrification efficacy. In CAA reactors, nitrate removal was accompanied by the formation of denitrification by-products such as nitrite and nitrous oxide, with the extent of nitrate removal being proportional to citric acid concentration. These results suggest that citric acid induced heterotrophic biological denitrification. PTRA reactor that incorporated CAA and the same electron donor showed a similar denitrification efficiency to CAA reactor. FTRA reactor, which contained the same amount of fumarate as PTRA, enhanced denitrification by 7% as compared to the PTRA reactor. The overall results of this work indicate that surplus citric acid can be efficiently utilized in heterotrophic denitrification.

Effects of Hydraulic Retention Time and Cycle Time on the Sewage Treatment of Intermittently Aerated Nonwoven Fabric Filter Bioreactor (간헐포기식 부직포 여과막 생물반응조에서 체류시간 및 주기시간이 하수처리에 미치는 영향)

  • Kim, Taek-Su;Bae, Min-Su;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • This study was carried out to investigate the removal efficiency of an intermittently aerated nonwoven fabric filter bioreactor fed continuously with domestic sewage. The hydraulic retention time(HRT) of the reactor was reduced from 12 hrs to 10 hrs to 8 hrs during an experimental period of 17 months. In order to search an optimum aeration/nonaeration time ratio for the nitrogen removal at each HRT, the cycle times of 3, 2 and 1 hr were tested at the aeration/nonaeration time ratio of 1. Then, the aeration/nonaeration time ratio was changed from 50 min/70 min to 40 min/80 min to 30 min/90 min at the cycle time of 2 hr which showed the best nitrogen removal. During the experimental period, the effluent SS concentration was always below 1.2 mg/L with more than 95% of BOD removal efficiency. The highest nitrogen removal of 90.1% was observed at the aeration/nonaeration time ratio of 40 min/80 min at the HRT of 10 hr. Oxidation-reduction potential could represent the degree of the nitrification and denitrification reaction in the reactor.

Acceleration of Biological Denitrification by Using Bioelectrochemical Reactor (생물전기화학반응기를 이용한 생물학적 탈질반응의 촉진)

  • Chun, Ji-Eun;Yu, Jae-Cheul;Park, Young-Hyun;Seon, Ji-Yun;Cho, Sun-Ja;Lee, Tae-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.989-996
    • /
    • 2012
  • Nitrate contamination of water environments can create serious problems such as eutrophication of rivers. Conventional biological processes for nitrate removal by heterotrophic denitrification often need additional organic substrates as carbon sources and electron donors. We tried to accelerate biological denitrification by using bioelectrochemical reactor (BER) in which electrode works as an electron donor. Denitrification activity of 8 environmental samples from various sediments, soils, groundwaters, and sludges were tested to establish an efficient enrichment culture for BER. The established enrichment culture from a soil sample showed stable denitrification activity without any nitrite accumulation. Microbial community analysis by using PCR-DGGE method revealed that dominant denitrifiers in the enrichment culture were Pantoea sp., Cronobacter sakazakii, and Castellaniella defragrans. Denitrification rate ($0.08kg/m^3{\cdot}day$) of the enrichment culture in BER with electrode poised at -0.5 V (vs Ag/AgCl) was higher than that ($2.1{\times}10^{-2}kg/m^3{\cdot}day$) of BER without any poised potential. This results suggested that biological denitrification would be improved by supplying potential throughout electrode in BER. Further research using BER without any organic substrate addition is needed to apply this system for bioremediation of water and wastewater contaminated by nitrate.

Practical Demonstration of YPNR Process to Elimination the Total Nitrogen Ingredient in Sewage (하수 내 총질소 성분 제거를 위한 YPNR 공정의 실증 연구)

  • Lim, Eun-Tae;Jeong, Gwi-Taek;Bhang, Sung-Hun;Kim, Yong-Un;Park, Jae-Hee;Park, Seok-Hwan;Park, Don-Hee
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.291-295
    • /
    • 2009
  • This study performed verification experiment for the removal of total nitrogen in sewage from a Town M village sewage treatment plant using YPNR processes. The total nitrogen discharged after the denitrification process was maintained at a level of 8-15 mg/L, which results in the total nitrogen removal efficiency above 68% on average. The total nitrogen components in discharged water consisted of 16% of ammonia nitrogen, 6% of nitrite nitrogen, and 77% of nitrate nitrogen, which reaches a 95% nitrification efficiency. Hence, the YPNR advanced treatment process used in this study can be successfully applied to sewage treatment.

High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur (황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거)

  • Kim, Dae-young;Moon, Jin-young;Baek, Jin-uk;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

Effects of Operational Condition on N2O Production from Biological Nitrogen Removal Process (생물학적 질소제거시 운전조건의 변화가 N2O 발생에 미치는 영향)

  • Jang, Hyun-Sup;Kim, Tae-Hyeong;Lee, Myoung-Joo;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.547-555
    • /
    • 2009
  • The objectives of this research were focused on the effects of various operating parameters on nitrous oxide emission such as C/N ratio, ammonia concentration and HRT in the hybrid and suspension reactors. With the decreasing of C/N ratios, $N_2O$ emission rates in the both processes were increased because organic carbon source for denitrification was depleted. In case of biofilm reactor operated using medium, $N_2O$ release from the nitrification was not affected by the variation of ammonia concentration. But in the suspension reactor, $N_2O$ production from the nitrification was rapidly increased with the increase of ammonia. Nitrite accumulation caused by undesirable nitrification conditions could be a important reason for the increase in the $N_2O$ production from the aerobic reactor. And rapid increase in $N_2O$ production was reflected by the decrease of HRT, similar to the results observed in the results of ammonia loading changes. So it could be said that it is very important to put in consideration both its optimum conditions for wastewater treatment efficiency and suitable conditions for $N_2O$ diminish, simultaneously, in order to development an eco-friendly and advanced wastewater treatment, especially in BNR process.

Changes of Microbial Community Depending on Different Dissolved Oxygen in Biological Nitrogen Removal Process (생물학적 질소제거 공정에서 용존산소변화에 따른 미생물의 군집변화)

  • Park, Jong-Il;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.939-947
    • /
    • 2008
  • PCR-DGGE method was applied to analyze changes of microbial community in simultaneous nitrification and denitrification (SND) bioreactor with various DO concentrations. In the analysis of eubacterial community, band profiles of DGGE were similar with 2 or 1 mg/L DO concentrations in the reactor. Experimental results led to 16 different bacteria being identified, including 5 dominant strains(3 strains of Uncultured Bacterium, 1 strains of Bacillus, 1 strains of Uncultured Bacteroidetes). DGGE results at 0.5 mg/L DO concentration led to 12 strains being identified, including 7 dominant strains(5 strains of Uncultured Bacterium, 2 strains of Zoogloea sp.). DGGE results at 0.1 mg/L DO concentration led to 11 strains being identified, including 3 dominant strains(1 strains of Uncultured Bacterium, 2 strains of Zoogloea sp.). In DGGE band profiles of $\beta$-AOB($\beta$-Ammonia Oxidizing Bacteria), only one band was observed. This band had 97% similarity with Nitrosomonas sp. done DNB Y20. This band was clearly observed at the 2, 1 and 0.5 mg/L DO concentrations, while the brightness of the band at 0.1 mg/L DO concentration was mostly dimmed. In DGGE band profiles of denitrification process, 5 bands(3 strains of Uncultured organism containing nirS, 2 strains of Uncultured organism containing nirK) were observed. Among those bands, the brightness of one band was gradually increased at the lower DO concentrations. This band has 86% identity with Uncultured organism clone eS1 cd1 nirS gene, partial cds. Based on this result, it could be concluded that Uncultured organism clone eS1 cd1 nirS gene, partial cds is a predominant microorganism in the denitrification process.

Effects of Global Warming on the Estuarine Wetland Biogeochemistry (기후변화가 하구 습지 토양의 생지화학적 반응에 미치는 영향에 관한 연구)

  • Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.553-563
    • /
    • 2011
  • This study investigated the effects of elevated $CO_2$ and nitrogen addition on the anaerobic decomposition mediated by microorganisms to determine the microbial metabolic pathways in the degradation of organic matters of the sediments. There were statistically significant differences(P < 0.05) in the rates between denitrification and methanogenesis upon increased $CO_2$ concentration, nitrogen addition, in the presence of plants. Based on the assumption that anaerobic degradation of organic matter mainly occurs through denitrification, iron reduction, and methanogenesis, methanogenesis is the dominant pathways in the decomposition of organic matter under the condition of elevated $CO_2$ and nitrogen addition. In addition, the altered environment increased anaerobic carbon decomposition. Therefore, it can be concluded that freshwater wetland sediments have positive effects on the global warming by the increased methanogenesiss as well as increased anaerobic carbon decomposition.

Soil Microbial Diversity of Paddy Fields in Korea (논 토양 서식 미생물의 다양성에 관한 연구)

  • Suh, Jang-Sun;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.200-207
    • /
    • 1997
  • In order to evaluate the soil microbiological characteristics of paddy fields in Korea, surface soils were sampled from 63 sites in different agroclimatic zones before submersion of the fields. The distribution of microorganisms and the microbial diversity indices were examined. Soil microbial populations were generally higher in southern area than in northern area. The colony forming units(cfus) of fluorescence Pseudomonas sp. showed the greatest regional differences, among the microbes investigated. On the topographical differences, the cfus of aerobic bacteria, fluorescence Pseudomonas sp. and Azotobacter sp. maintained high level in coastal plains; and on the sail textural difference, fungus was the highest in clay soil, but Bacillus sp., Azotobacter sp and denitrifiers were the highest in silty clay loam soil at 0.05 probability level based on the multiple range test. The numbers of ammonium oxidizers and Azotobacter sp. were increased with soil pH. Microbial diversity indices of paddy fields which calculated from the percentages of Bacillus sp. fluorescence Pseudomonas sp. Azotobacter sp. denitrifiers, ammonium oxidizers, nitrite oxidizers, actinomycetes and fungus to these total microbial numbers were between 0.109 and 0.661. On the soil textures, the microbial diversity indices of sandy, sandy loam, silty clay loam, clay loam and clay soil were 0.443, 0.427, 0.414, 0.405 and 0.362 respectively.

  • PDF