• Title/Summary/Keyword: 생물막 담체

Search Result 39, Processing Time 0.022 seconds

Study on the Performances and Microbial Community in the Biofilm Process for Treating Nonpoint Source Pollutants (비점오염물질 처리를 위한 생물막 공정의 운전 및 미생물 군집의 특성)

  • Choi, Gi-Choong;Park, Jeung-Jin;Kang, Du-Kee;Yu, Jae-Cheul;Byun, Im-Gyu;Shin, Hyun-Suk;Lee, Tae-Ho;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1021-1027
    • /
    • 2008
  • In this study, biofilm process was introduced for treating nonpoint source pollutants. The ceramic media were provided for biofilm growth in the reactors. The packing ratio of ceramic media was 5% and 15(v/v)%, respectively. Thereafter, the reactors were operated intermittently with the different interevent periods such as 0, 5, 10 and 15 days, respectively. The removal efficiencies of COD and NH$_4{^+}$-N were investigated at the different operating conditions such as media packing ratio, temperature, and interevent period. Additionally, Polymerase chain reaction(PCR)-denaturing gel gradient electrophoresis(DGGE) and INT-dehydrogenase activity(DHA) test were conducted to observe the microbial community and activity in the biofilm. Consequently, the interevent period seemed to have no significant influence on the COD removal efficiency. COD was removed within 6$\sim$8 hours at 25$^{\circ}C$ and about 15 hours at 10$^{\circ}C$. DGGE profiles showed that the initial species of microorganisms were changed from seeded activated sludge into the microorganisms detected in sediments. INT-DHA test also showed that the activities of microorgnaisms were not decreased even in the 15 days of interevent period.

Efficiency of Nutritive Salts Removal and Algae Growth Inhibition Using a Fibrous Carrier (섬유상 담체를 이용한 영양염류 제거 및 조류 증식 억제에 관한 연구)

  • Park, Sin-Hae;Kang, Dae-Jong;Yang, Kyeong-Soon;Jeon, Soo-Bin;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.257-264
    • /
    • 2015
  • Conventional physicochemical technologies for algae growth inhibition have economical and environmental pollution problems. This study attempted to overcome the problems by nature-friendly biological inhibition technology using fibrous carrier. The experimental results showed that the most effective carrier material, polyester, exhibited the highest biofilm thickness. The removal efficiency for nutrient salts, such as nitrogen and phosphorous, and algae growth inhibition of polyester carrier was 14.59%, 6.36%, and 77%, respectively, which is higher than for control group. These result indicate that the polyester carrier is available in eutrophic lake.

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.

단일 생물막 반응기에서 역세척과 다공성 생물막 담체가 질소제거에 미치는 영향

  • Lee, Su-Cheol;Yu, Ik-Geun;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.451-454
    • /
    • 2000
  • This study was carried out to investigate the effects of hydraulic backwash load and porous ceramic media on the biological nitrogen removal efficiencies of a biological aerated filter. An upflow anoxic-oxic biological aerated filter(AO-BAF) with porous ceramic media can remove nitrogen by nitrification and denitrification in single unit. After the AO-BAF backwash, nitrogen removal efficiency was lowest and gradually increased to the steady state. Nitrification efficiency, however, showed the opposite result. It is likely that the biofilms are exposed to aerobic condition as the excess biofilms were sloughed off by backwashing

  • PDF

Microbe Adhesion and Organic Removal from Synthetic Wastewater Treatment using Polypropylene Media Modified by Ion-Assisted Reactions (이온 보조 반응에 의하여 활성화된 폴리프로필렌 담체를 이용만 합성폐수 처리시 미생물 부착 및 유기물의 제거)

  • Seon, Yong-Ho;Han, Sung;Koh, Seok-Keun
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • The surface of polypropylene was modified by 1 keV $Ar^+$ ion beam in an $O_2$ environment in order to enhance wettability. Contact angle of deionized water on modified polypropylene was reduced from $78^{\circ}$to $22^{\circ}$. The enhanced wettability is originated from newly formed functional groups such as ether, carbonyl, and carbonyl groups. During immersion in deionized water, the enhanced wettability has remained nearly same. After washing in water, the hydrophilic functional groups on the polymer surface have been very stable. The modified polypropylene was adopted as bio-film media to remove organics in synthetic wastewater. Microbe adhesion on the polypropylene surface was improved due to the newly formed hydrophilic groups.

Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media (이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF

The Simultaneous Nitrification and Organics Oxidation of Wastewater in Airlift Biofilm Reactors (공기리프트 생물막 반응기에서의 폐수 질화 및 유기물 동시산화)

  • 서일순;허충희
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.573-578
    • /
    • 2001
  • The effects of organic supplement (acetate) and dissolved oxygen concentration on the nitrification rate of wastewater were investigated in the 27.7 L pilot-scale airlift biofilm reactor with the granular activated carbon media of 0.613 mm diameter. The ammonium oxidation rate increased stepwise up to 5 kg N/㎥$.$d at the riser air velocity of 0.063 m/s, when the air velocity and the ammonium loading rate were raised alternately. The nitrite build-up was observed during the early stage of the biofilm formation, which disappeared after the reactor operation of 128 days. As increasing the organic loading rate, the organic oxidation rate increased up to 25.0 kg COD/㎥$.$d with the removal efficiency of 94% but the oxidation rates of ammonium and nitrite decreased. The oxidation rates of ammonium and nitrite increased with the dissolved oxygen concentrations. When the pure oxygen was sparged, the ammonium oxidation rate was almost five times higher than that with air at the same velocity.

  • PDF

Characteristics of Toluene Removal in a Biotrickling Filter with Zeolite/Polyethylene Composite Media (제올라이트/폴리에틸렌 복합 담체를 이용한 Biotrickling Filter에서 톨루엔 제거 특성)

  • Hong, Sung-Ho;Lee, Chung-Sik;Lee, Jea-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.573-580
    • /
    • 2005
  • This study was to investigate the removal characteristics of toluene in a gas stream by using a biotrickling filter packed with zeolite-contained polyethylene media. The specific surface area and the void fraction of the media were $500\;m^2/m^3$ and 82%. The surface roughness of the media was higher than that of pure polyethylene media. The toluene removal efficiency decreased with increasing the inlet toluene concentration and gas flow rate. The maximum elimination capacity of toluene in the biotrickling filter was $64\;g/m^3{\cdot}hr$. During 200 days operation, toluene removal efficiency was maintained from 90% to 98% until 167 days, hereafter, it was rapidly reduced with a rise in pressure drop due to an excess proliferation of biomass on the media. Pressure drop and removal capability of the biotrickling filter was fully recovered after backwashing.

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors (혐기-무산소-호기 반응조내 질화세균군의 변화)

  • Park, Jong-Woong;Lee, Young-Ok;Go, Jun-Heok;Ra, Won-Sik;Lim, Uk-Min;Park, Ji-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.138-144
    • /
    • 2005
  • This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.