• Title/Summary/Keyword: 생물리적 모형

Search Result 22, Processing Time 0.025 seconds

A Review for Non-linear Models Describing Temperature-dependent Development of Insect Populations: Characteristics and Developmental Process of Models (비선형 곤충 온도발육모형의 특성과 발전과정에 대한 고찰)

  • Kim, Dong-Soon;Ahn, Jeong Joon;Lee, Joon-Ho
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.1-18
    • /
    • 2017
  • Temperature-dependent development model is an essential component for forecasting models of insect pests as well as for insect population models. This study reviewed the nonlinear models which explain the relationship between temperature and development rate of insects. In the present study, the types of models were classified largely into empirical and biophysical model, and the groups were subdivided into subgroups according to the similarity of mathematical equations or the connection with original idea. Empirical models that apply analytical functions describing the suitable shape of development curve were subdivided into multiple subgroups as Stinner-based types, Logan-based types, performance models and Beta distribution types. Biophysical models based on enzyme kinetic reaction were grouped as monophyletic group leading to Eyring-model, SM-model, SS-mode, and SSI-model. Finally, we described the historical development and characteristics of non-linear development models and discussed the availability of models.

Review of the Role of Land Surface in Global Climate Change (기후변화에서 지표환경의 역할에 대한 고찰)

  • Kim, Seong-Joong
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2009
  • In response to the abrupt climate change in recent years, atmosphere, ocean and cryosphere are reported to be altered. In addition to these changes, the land surface is also gradually changing and its impact on the global climate may not be negligible. The land surface change impacts the global climate via two ways, the biogeochemical and biophysical feedbacks. The biogeochemcial change in the land surface modifies the atmospheric trace-gas concentrations through a change in photo synthesis, while biophycal changes of the land surface alters the surface albedo, which influences the amount of the short wave radiative heat fluxes. There are many examples in the past that the change in land surface greatly influences the global climate change. The recent IPCC report has suggested that the climate change will occur rather abrubtly in the near future. In order to predict the future climate accurately, the impact of the land surface change is fully considered.

  • PDF

A Short Record for the New Distribution and Some Morphological Characters of Archidium ohioense Schimp. ex Müll. Hal. (Archidiaceae) (Archidium ohioense의 신분포지 및 특징)

  • Eunhwa Yoo;Kyounghoon Kim;Shin-Ho Kang
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.28-28
    • /
    • 2023
  • Archidium ohioense Schimp. ex Müll. Hal.는 국내 자생 정보가 부족했던 종으로 본 연구를 통해 경기도 연천군 전곡읍 간파리 감악산에서 신분포지를 확인하였다. A. ohioense가 속하는 Archidium Brid. (Archidiaceae)는 극지방을 제외한 아열대지역에서 온대지역까지 분포하며, 총 36종이 생육하는 것으로 알려져 있고, 최근 anti-inflammatory와 antisickling potentials에 관한 효능 연구가 수행되고 있다. A. ohioense의 잎은 난상피침형~삼각상피침형으로 잎가장자리는 밋밋하나 잎끝에 미세한 치돌기가 있다. 잎맥은 굵고 1개이며 잎끝까지 또는 짧게 돌출되어 있다. 중앙세포는 마름모형, 긴 선형의 마름모형이고, 익부세포는 마름모형에서 직사각형이다. 추후 분자생물학적인 연구 및 생태학적인 연구가 추가된다면 안정적인 자원화에 기여할 수 있을 것이라 사료된다.

  • PDF

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.

A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration (한국의 두 주요 생태계에 대한 JULES 지면 모형의 민감도 분석: 일차생산량과 생태계 호흡의 모사에 미치는 생물리모수의 영향)

  • Jang, Ji-Hyeon;Hong, Jin-Kyu;Byun, Young-Hwa;Kwon, Hyo-Jung;Chae, Nam-Yi;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.107-121
    • /
    • 2010
  • We conducted a sensitivity test of Joint UK Land Environment Simulator (JULES), in which the influence of biophysical parameters on the simulation of gross primary productivity (GPP) and ecosystem respiration (RE) was investigated for two typical ecosystems in Korea. For this test, we employed the whole-year observation of eddy-covariance fluxes measured in 2006 at two KoFlux sites: (1) a deciduous forest in complex terrain in Gwangneung and (2) a farmland with heterogeneous mosaic patches in Haenam. Our analysis showed that the simulated GPP was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration for both ecosystems. RE was sensitive to wood biomass parameter for the deciduous forest in Gwangneung. For the mixed farmland in Haenam, however, RE was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration like the simulated GPP. For both sites, the JULES model overestimated both GPP and RE when the default values of input parameters were adopted. Considering the fact that the leaf nitrogen concentration observed at the deciduous forest site was only about 60% of its default value, the significant portion of the model's overestimation can be attributed to such a discrepancy in the input parameters. Our finding demonstrates that the abovementioned key biophysical parameters of the two ecosystems should be evaluated carefully prior to any simulation and interpretation of ecosystem carbon exchange in Korea.

Estimation of CMIP5 based streamflow forecast and optimal training period using the Deep-Learning LSTM model (딥러닝 LSTM 모형을 이용한 CMIP5 기반 하천유량 예측 및 최적 학습기간 산정)

  • Chun, Beomseok;Lee, Taehwa;Kim, Sangwoo;Lim, Kyoung Jae;Jung, Younghun;Do, Jongwon;Shin, Yongchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.353-353
    • /
    • 2022
  • 본 연구에서는 CMIP5(The fifth phase of the Couple Model Intercomparison Project) 미래기후시나리오와 LSTM(Long Short-Term Memory) 모형 기반의 딥러닝 기법을 이용하여 하천유량 예측을 위한 최적 학습 기간을 제시하였다. 연구지역으로는 진안군(성산리) 지점을 선정하였다. 보정(2000~2002/2014~2015) 및 검증(2003~2005/2016~2017) 기간을 설정하여 연구지역의 실측 유량 자료와 LSTM 기반 모의유량을 비교한 결과, 전체적으로 모의값이 실측값을 잘 반영하는 것으로 나타났다. 또한, LSTM 모형의 장기간 예측 성능을 평가하기 위하여 LSTM 모형 기반 유량을 보정(2000~2015) 및 검증(2016~2019) 기간의 SWAT 기반 유량에 비교하였다. 비록 모의결과에일부 오차가 발생하였으나, LSTM 모형이 장기간의 하천유량을 잘 산정하는 것으로 나타났다. 검증 결과를 기반으로 2011년~2100년의 CMIP5 미래기후시나리오 기상자료를 이용하여 SWAT 기반 유량을 모의하였으며, 모의한 하천유량을 LSTM 모형의 학습자료로 사용하였다. 다양한 학습 시나리오을 적용하여 LSTM 및 SWAT 모형 기반의 하천유량을 모의하였으며, 최적 학습 기간을 제시하기 위하여 학습 시나리오별 LSTM/SWAT 기반 하천유량의 상관성 및 불확실성을 비교하였다. 비교 결과 학습 기간이 최소 30년 이상일때, 실측유량과 비교하여 LSTM 모형 기반 하천유량의 불확실성이 낮은 것으로 나타났다. 따라서 CMIP5 미래기후시나리오와 딥러닝 기반 LSTM 모형을 연계하여 미래 장기간의 일별 유량을 모의할 경우, 신뢰성 있는 LSTM 모형 기반 하천유량을 모의하기 위해서는 최소 30년 이상의 학습 기간이 필요할 것으로 판단된다.

  • PDF

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

Estimation of Body Weight Using Body Volume Determined from Three-Dimensional Images for Korean Cattle (한우의 3차원 영상에서 결정된 몸통 체적을 이용한 체중 추정)

  • Jang, Dong Hwa;Kim, Chulsoo;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.393-400
    • /
    • 2021
  • Body weight of livestock is a crucial indicator for assessing feed requirements and nutritional status. This study was performed to estimate the body weight of Korean cattle (Hanwoo) using body volume determined from three-dimensional (3-D) image. A TOF camera with a resolution of 640×480 pixels, a frame rate of 44 fps and a field of view of 47°(H)×37°(V) was used to capture the 3-D images for Hanwoo. A grid image of the body was obtained through preprocessing such as separating the body from background and removing outliers from the obtained 3-D image. The body volume was determined by numerical integration using depth information to individual grid. The coefficient of determination for a linear regression model of body weight and body volume for calibration dataset was 0.8725. On the other hand, the coefficient of determination was 0.9083 in a multiple regression model for estimating body weight, in which the age of Hanwoo was added to the body volume as an explanatory variable. Mean absolute percentage error and root mean square error in the multiple regression model to estimate the body weight for validation dataset were 8.2% and 24.5kg, respectively. The performance of the regression model for weight estimation was improved and the effort required for estimating body weight could be reduced as the body volume of Hanwoo was used. From these results obtained, it was concluded that the body volume determined from 3-D of Hanwoo could be used as an effective variable for estimating body weight.

Flood Estimation Using Neuro-Fuzzy Technique (Neuro-Fuzzy 기법을 이용한 홍수예측)

  • Ji, Jung-Won;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.128-132
    • /
    • 2012
  • 물은 생물의 생존을 위해 필수적인 요소로 인류가 시작된 이래로 물을 효율적으로 이용하고 안전하게 관리하기 위한 노력은 계속되어 왔다. 최근 지구 온난화가 주요 원인으로 알려진 국지성 집중호우의 피해는 매우 심각하며, 이로 인해 치수에 대한 중요성은 날로 커지고 있다. 지금까지 사용해 왔던 홍수 예 경보 과정은 특정 지점의 유출량을 예측하기 위해서 강우-유출 모형을 운영하였다. 그러나 물리적 모형의 경우 운영에 필요한 매개변수의 결정과정이 복잡하고, 매개변수 결정을 위해 많은 자료를 필요로 한다. 또한 그 매개변수의 결정과정은 많은 불확실성을 포함하고 있어서 모형의 운영을 위한 전처리과정과 계산과정을 거치는 동안 발생한 오차가 누적되어 결과물 속에는 많은 오차가 포함되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키고 더 우수한 유출량 예측을 위해 neuro-fuzzy 추론 기법을 이용한 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하여 하천수위를 예측하였다. ANFIS는 신경회로망과 퍼지이론을 결합한 기법으로 신경회로망의 구조와 학습 능력을 이용하여 제어환경에서 획득한 입 출력 정보로부터 언어변수의 membership 함수와 제어규칙을 제어 대상에 적합하도록 자동으로 조종하는 기법이다. 본 연구에서는 ANFIS를 사용하여 탄천 하류에 위치한 대곡교의 수위를 예측하였다. 분석을 위해 2007년부터 2011년까지의 탄천 유역의 관측 강우자료와 수위 자료 중 강우강도와 지속시간, 강우 형태에 따라 7개의 강우사상을 선정하였다. 학습자료 및 보정자료의 변화에 따른 예측 오차를 비교하여 모형의 적용성과 적정성을 평가하였다. 적용결과 입력자료 구성의 경우 해당 시간의 강우량 및 수위자료와 10분 전 강우자료를 이용한 모델이 가장 우수한 예측을 보였고, 학습자료의 경우 자료의 길이가 길고, 최대홍수량이 큰 경우 가장 우수한 예측 결과를 보였다. 본 연구의 적용결과 가장 우수한 모형의 경우 30분 예측 첨두수위 오차는 0.32%, RMSE는 0.05m 이고 예측시간이 길어짐에 따라 오차가 비선형적으로 증가하는 경향을 보였다.

  • PDF

Assessing forest net primary productivity based on a process-based model: Focusing on pine and oak forest stands in South and North Korea (과정기반 모형을 활용한 산림의 순일차생산성 평가: 남북한 소나무 및 참나무 임분을 중심으로)

  • Cholho Song;Hyun-Ah Choi;Jiwon Son;Youngjin Ko;Stephan A. Pietsch;Woo-Kyun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.400-412
    • /
    • 2023
  • In this study, the biogeochemistry management (BGC-MAN) model was applied to North and South Korea pine and oak forest stands to evaluate the Net Primary Productivity (NPP), an indicator of forest ecosystem productivity. For meteorological information, historical records and East Asian climate scenario data of Shared Socioeconomic Pathways (SSPs) were used. For vegetation information, pine (Pinus densiflora) and oak(Quercus spp.) forest stands were selected at the Gwangneung and Seolmacheon in South Korea and Sariwon, Sohung, Haeju, Jongju, and Wonsan, which are known to have tree nurseries in North Korea. Among the biophysical information, we used the elevation model for topographic data such as longitude, altitude, and slope direction, and the global soil database for soil data. For management factors, we considered the destruction of forests in North and South Korea due to the Korean War in 1950 and the subsequent reforestation process. The overall mean value of simulated NPP from 1991 to 2100 was 5.17 Mg C ha-1, with a range of 3.30-8.19 Mg C ha-1. In addition, increased variability in climate scenarios resulted in variations in forest productivity, with a notable decline in the growth of pine forests. The applicability of the BGC-MAN model to the Korean Peninsula was examined at a time when the ecosystem process-based models were becoming increasingly important due to climate change. In this study, the data on the effects of climate change disturbances on forest ecosystems that was analyzed was limited; therefore, future modeling methods should be improved to simulate more precise ecosystem changes across the Korean Peninsula through process-based models.