• Title/Summary/Keyword: 샘플 전처리

Search Result 104, Processing Time 0.02 seconds

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Characterization of quality changes of whole super sweet corn (Zea mays saccharata Sturt.) during thermal sterilization for shelf-stable products (상온유통을 위한 가열살균 중의 통 초당옥수수의 품질변화 연구)

  • Lee, Yun Ju;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This study investigated the quality changes in whole super sweet corn during thermal processing to extend its shelf-life. To minimize the reduction of unique texture of whole sweet corn after the sterilization, the alcohol sanitation applied and the cold point of a whole corn ear was determined using a computer simulation. The cold point was located between the corn kernel and the cob. The microorganisms on the surface of sweet corn were reduced by more than 1 log CFU/g after alcohol sanitation, then the whole corn was treated to satisfy the degree of sterilization ($F_{121.1}=4$). The quality of sterilized sweet corn was compared with the control that was treated with steaming. The quality changes of sterilized sweet corn during storage were monitored for 9 months at $25^{\circ}C$. The hardness was maintained within 30% of its initial value. The minimum of hardness was $464.50{\pm}103.35g$ and maximum of hardness was $514.50{\pm}81.83g$. The differences in the sugar content among the samples were found, but the sugar content of corn kernel remained within 30% of the control, ranging from $28.83{\pm}1.05$ to $34.36{\pm}0.42%$. The yellowness was higher than that of control by 5%. The maximum value of yellowness was $34.36{\pm}0.42$. The general bacteria and molds and yeasts in corn kernel stored at $25^{\circ}C$ were not detected after 9 months of storage at $25^{\circ}C$. Therefore, in this study, we have demonstrated that the thermal sterilized method extends the shelf-life of whole sweet corn with minimizing its quality changes over 6 months in room temperature.