• Title/Summary/Keyword: 샌드위치 외벽 패널

Search Result 5, Processing Time 0.017 seconds

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

The Real Scale Fire Tests for Vertical Fire Spread Study of External Finishing Material (외벽 마감재료의 수직화재 확산 연구를 위한 실물화재 실험)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Kim, Jung-Hyun;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • To reduce human life and property damage at the fire in a building, it is most critical to control flame spread in the early stage. Fire spread prevention measure generally includes fire resistance performance securing of structure member in the arson zone and use limitation based on combustion performance of finishing material. The latter is most fundamental fire safety design to determine flame spread, but domestic combustion test determines combustion performance by specimen sized fire test method. Thus, there are many restrictions in the determination of combustion performance by composite material such as sandwich panel. Especially, outer finishing material uses a variety of composite material such as dry bit, aluminum composite panel, and metal panel compared to inner finishing material. Therefore, this study would determine vertical fire spread features by a full scaled fire experiment through the test method of ISO 13785-2, an international test standard.

An Analysis of Factors Influencing Insulation Performance of Inorganic Autoclaved Lightweight Concrete Sandwich Wall Panels Using Shear Connectors (전단연결재를 적용한 무기계 경량기포콘크리트(ALC) 샌드위치 외벽 패널의 단열성능에 미치는 영향요인 분석)

  • Kang, Dong Howa;Kang, Dong Hwa;Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • The purpose of this study was to analyze factors influencing insulation performance of inorganic Autoclaved Lightweight Concrete(ALC) sandwich wall panels with the application of shear connectors. To analyze the effect of shear connectors on the thermal performance of sandwich wall panels, heat transfer analysis was conducted by using the three-dimensional heat transfer simulation software. Four types of shear connector such as Pin, Clip, Grid, and Truss were selected for insulation performance analysis. Thermal bridge coefficient was calculated by varying typical panel thickness and shear connector thickness and materials such as steel, aluminum, and stainless steel. The results showed that Grid and Truss type widely distributed along the section of sandwich wall panel had a great influence on the thermal bridge coefficient by changing the influence factors. Based on the results of thermal and structural performance analysis, effective heat transmission coefficient of the sandwich wall panel satisfying the passive house insulation criteria was calculated. As a result, it was found that heat transmission coefficient was increased from $0.132W/m^2{\cdot}K$ to $0.141{\sim}0.306W/m^2{\cdot}K$ depending on the shear connector types and materials. In the majority of cases, the passive house insulation criteria was not satisfied after using shear connectors. The results of this study were likely to vary according to how influence factors were set, but it is important to apply the methods that reduce the thermal bridge when there would be a possibility of greatly affecting the insulation performance.

A Study on Flame Spread Prevention of Sandwich Panel (복합자재 화재확산방지구조에 대한 연구)

  • Cho, Nam-Wook;Kim, Do-Hyun;Shim, Ji-Hun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.84-90
    • /
    • 2015
  • Multi-layered material (sandwich panel) consists of double-sided steel plate which is incombustible material or similar material and core material which is not incombustible material. In case of sandwich panel which uses combustible material as insulation, flames spread inside the steel plate at the time of fire so that it is difficult to extinguish fire from the outside and flames spread rapidly and may cause the building to collapse. The current Building Act requires the sandwich panel to secure fire-retardant performance according to the purpose and size of building. In this study, the fire spreading prevention structure applied to partial exterior walls was applied to multi-layered material and its effect was measured through full scale fire test and the possibility to secure fire safety of buildings by applying the fire spreading prevention structure to multi-layered material in future was presented.

A Study on Characteristics of Smoke Release for Architectural Surface Material (건축용 외장재의 발연특성에 관한 연구)

  • Park, Young-Ju;Lee, Hae-Pyeong;Hwang, Me-Jung;Yang, Young-Suk;Yu, Jae-Yeol;Lee, Mi-Li
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.486-489
    • /
    • 2011
  • 건축물 내 외벽에 주로 사용되는 건축용 자재 중 샌드위치 패널은 양면으로 도장한 철판 사이에 심재로 단열재를 넣어 구성된 합성복합자재이다. 샌드위치 패널의 사용범위는 창고시설 및 공업용 건축 등의 용도로 많이 사용되고 있으며, 최근에는 시공에 따른 이점으로 주택 및 상업용등으로 널리 확대되어 사용되고 있다. 본 연구에서는 화재초기의 연기밀도는 인명 대피 시 시야확보에 있어 중요한 역할을 하기에 현재 국내에서 사용되는 건축용 외장재를 용도별로 선정하여 시간에 따른 연기밀도의 값을 구하고 용도에 따른 화재 연기의 확산 정도를 예측하는데 목적을 두었다.

  • PDF