• Title/Summary/Keyword: 색 타입 인젝터

Search Result 2, Processing Time 0.016 seconds

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.