• Title/Summary/Keyword: 색 센서

Search Result 171, Processing Time 0.027 seconds

New Yellow Quinoline Derivatives Including Dione Moiety for Image Sensor Color Filters (이미지 센서 컬러 필터용 다이온 성분을 포함하는 신규 황색 퀴놀린 유도체)

  • Sunwoo, Park;Seyoung, Oh;Yuna, Kang;Hyukmin, Kwon;Sunwoo, Dae;Changyu, Lee;Dae Won, Kim;Min-Sik, Jang;Jongwook, Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.80-85
    • /
    • 2023
  • New yellow quinoline-dione dye derivatives were designed and synthesized for use in image sensor color filters. The synthesized compounds have a basic chemical structure composed of quinoline and dione groups. New materials were evaluated on the basis of their optical and thermal properties under conditions mimicking those of a commercial device fabrication process. A comparison of their related performances revealed that, between the two prepared compounds, 2-(3-hydroxyquinolin-2(1H)-ylidene)-1H-indene-1,3(2H)-dione (HQIDO) exhibited the superior performance as an image sensor color filter material, including a solubility greater than 0.5 wt% in propylene glycol monomethyl ether acetate solvent and a high decomposition temperature of 298 ℃, respectively. The results suggest that HQIDO can be used as a yellow dye additive in an image sensor colorant.

Feasibility study on the development of Liquid crystal-optical fiber temperature sensor for minimal invasive laserthermia (LC(Liquid crystal)-광섬유를 이용한 최소 침습적 레이저 온열 치료용 온도 측정 센서의 개발을 위한 기초 연구)

  • Lee, Bong-Soo;Hwang, Young-Muk;Chung, Soon-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.225-230
    • /
    • 2003
  • Nowadays, laserthermia is widely used to treat malignant tumors with generating heat as the one of minimal invasive surgeries. Generally, the laserthermia probe system consists of the fiber-optic laser and light guides, image guide and temperature sensor. It is very important to measure the temperature of treating tumor and make a stable temperature ($42{\sim}43^{\circ}C$) during the treating time. Therefore, laserthermia probe needs temperature sensor which can measure it exactly and fast. In this study, to develop a new type of temperature sensor with LC(liquid crystal) and optical fiber, the reflectivity of LC according to the temperature changes are measured. Also, the relationships are derived from the results.

A Remote Control of 6 d.o.f. Robot Arm Based on 2D Vision Sensor (2D 영상센서 기반 6축 로봇 팔 원격제어)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.933-940
    • /
    • 2022
  • In this paper, the algorithm was developed to recognize hand 3D position through 2D image sensor and implemented a system to remotely control the 6 d.o.f. robot arm by using it. The system consists of a camera that acquires hand position in 2D, a computer that controls robot arm that performs movement by hand position recognition. The image sensor recognizes the specific color of the glove putting on operator's hand and outputs the recognized range and position by including the color area of the glove as a shape of rectangle. We recognize the velocity vector of end effector and control the robot arm by the output data of the position and size of the detected rectangle. Through the several experiments using developed 6 axis robot, it was confirmed that the 6 d.o.f. robot arm remote control was successfully performed.

A Study on Portable Green-algae Remover Device based on Arduino and OpenCV using Do Sensor and Raspberry Pi Camera (DO 센서와 라즈베리파이 카메라를 활용한 아두이노와 OpenCV기반의 이동식 녹조제거장치에 관한 연구)

  • Kim, Min-Seop;Kim, Ye-Ji;Im, Ye-Eun;Hwang, You-Seong;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.679-686
    • /
    • 2022
  • In this paper, we implemented an algae removal device that recognizes and removes algae existing in water using Raspberry Pi camera and DO (Dissolved Oxygen) sensor. The Raspberry Pi board recognizes the color of green algae by converting the RGB values obtained from the camera into HSV. Through this, the location of the algae is identified and when the amount of dissolved oxygen's decrease at the location is more than the reference value using the DO sensor, the algae removal device is driven to spray the algae removal solution. Raspberry Pi's camera uses OpenCV, and the motor movement is controlled according to the output value of the DO sensor and the result of the camera's green algae recognition. Algae recognition and spraying of algae removal solution were implemented through Arduino and Raspberry Pi, and the feasibility of the proposed portable algae removal device was verified through experiments.

Production of Low-illuminated Image Sets based on Spectral Data for Color Constancy Research (색 항등성을 위한 분광 데이터 기반의 저조도 영상 집합 생성)

  • Kim, Dal-Hyoun;Lee, Woo-Ram;Hwang, Dong-Guk;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3207-3213
    • /
    • 2011
  • Most methods of color constancy, which is the ability to determine the object color regardless of the scene illuminant, have failed to meet our expectation of their performance especially about low-illuminated scenes. Some methods with high performance need to be developed, but we must, above all else, obtain experimental images for analyzing the required circumstances or evaluating the methods. Therefore, the paper produces new sets of images so that they can be used in the development of color constancy methods suitable for low-illuminated scenes. These sets are composed of two parts: one part of images which are synthesized with spectral power distribution(SPD) of illuminants, spectral reflectance curve of reflectances, and sensor response functions of camera; the other part of images where the intensity of each image is adjusted at the uniform rate. In an experiment, the use of the sets takes an advantage that its result images are analyzed and evaluated quantitatively as their ground truth data are known in advance.

Advanced Retinex Algorithm for Image Enhancement (영상 선명화를 위한 개선된 Retinex 알고리즘)

  • Cha, Hyo-Sang;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.29-41
    • /
    • 2013
  • The digital camera is impossible to preserve the appearance of a scene containing high dynamic range due to a limitations of the sensing hardware. The Retinex was proposed on the purpose to solve these problems. While the Retinex enhances visibility and color constancy, it sometimes suffers from color distortion, halo effect and reduced global contrast. This paper presents an advanced Retinex algorithm working on the YCbCr color coordinate to reduce the processing time and to improve the global contrast and color. Simulation results show that our algorithm significantly reduces the total processing time, and provide the superior result image by improving the global contrast and color consistency as well as by reducing the halo effect around the boundaries.

Development of Automatic Reading System for Steam Sterilization Indicator (스팀 멸균지시제 자동판독시스템 개발)

  • Song, Hyeok;Kim, Jeong-Rae;Lee, Woo-Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.709-714
    • /
    • 2022
  • The color change of the success of the steam sterilization indicator used in steam sterilization is currently being read by relying on the human eye. The result of color change on the success of sterilization can only be accurately read and judged by trained personnel. Developed an automatic reading system for steam sterilization indicators for the current human-dependent system, and developed an automatic reading device system for reading methods that were previously relied on with the human eye to develop a system that is more accurate and easier for anyone to read.

Fabrication of Chemical Sensors for the Detection of Acidic Gas using 1,3-bisdicyanovinylindane (1,3-bisdicyanovinylindane을 이용한 산성가스 감지용 화학 센서 제작)

  • Song, Hwan-Moon;Park, Young-Min;Son, Young-A;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.184-188
    • /
    • 2008
  • This study presented simple and efficient fabrication of chemical sensors for the detection of acidic gas using 1,3-bisdicyanovinylindane as an indicator because it can be promising materials having property of the rapid color change according to the variation of pH. The dissociation of proton and dye in acidic condition as changing of ion pairs give rise to dramatically change the absorbance intensity of 1,3-bisdicyanovinylindane, which can be easily applied to the development of chemical sensors. In addition, indicator dyes having negatively charge in aqueous phase can be easily fabricated using layer-by-layer (LBL) methods by way of electrostatic interaction. For the proof of concept, we demonstrated the abrupt presentation of skeleton symbol on the chemical sensor, which could be resulted from the reaction of 1,3-bisdicyanovinylindane as background color with acidic gas. Thus, the rapid appearance of symbol will induce user's caution under the emergency condition. The presented chemical gas sensor using 1,3-bisdicyanovinylindane have strong advantages. First, the fabrication process of gas sensor was very simple and low-cost. Secondly, sensors reacted by acidic gas could be reused for several times. Finally, the chemical gas sensor would be environmentally friend, which can be a basic tool for the realization of eco-organic sensor device.

Color Correction Method of CIS Digital Camera for Mobile Phone (휴대폰용 CIS 디지털 카메라의 컬러 보정법)

  • Kim Eun-Su;Jang Soo-Wook;Lee Sung-Hak;Han Chan-Ho;Jung Tae-Young;Sohng Kyu-Ik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.9-18
    • /
    • 2006
  • In the digital camera system, CMOS image sensor (CIS) is widely used because its size and weight become smaller and power consumption becomes lower. However, there are common problems that colors of the recorded image do not match those of the photographed object and that spectral sensitivity of the CIS used in different cameras varies largely in each case. Therefore, color correction is needed because the spectral sensitivity of the CIS in each color is neither the same color component for most standard colors nor the appropriate color representation for any output devices. In the conventional method, a color correction is empirically obtained by a large number of iterative experiments, but the result is not so satisfied. In this paper, a new method to obtain the efficient color correction matrix for digital camera using CIS is proposed. We obtain camera transfer matrix under the certain white-balance point, and color correction matrix that makes the transfer characteristic of digital camera close to the transfer characteristic of ideal camera is obtained. The experimental results show that the transfer characteristic of digital camera by the proposed method is close to that of the ideal camera. In addition, the image quality of pictures of digital camera using the proposed method is dramatically improved.

Illumination estimation based on valid pixel selection from CCD camera response (CCD카메라 응답으로부터 유효 화소 선택에 기반한 광원 추정)

  • 권오설;조양호;김윤태;송근호;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.251-258
    • /
    • 2004
  • This paper proposes a method for estimating the illuminant chromaticity using the distributions of the camera responses obtained by a CCD camera in a real-world scene. Illuminant estimation using a highlight method is based on the geometric relation between a body and its surface reflection. In general, the pixels in a highlight region are affected by an illuminant geometric difference, camera quantization errors, and the non-uniformity of the CCD sensor. As such, this leads to inaccurate results if an illuminant is estimated using the pixels of a CCD camera without any preprocessing. Accordingly, to solve this problem the proposed method analyzes the distribution of the CCD camera responses and selects pixels using the Mahalanobis distance in highlight regions. The use of the Mahalanobis distance based on the camera responses enables the adaptive selection of valid pixels among the pixels distributed in the highlight regions. Lines are then determined based on the selected pixels with r-g chromaticity coordinates using a principal component analysis(PCA). Thereafter, the illuminant chromaticity is estimated based on the intersection points of the lines. Experimental results using the proposed method demonstrated a reduced estimation error compared with the conventional method.