본 논문에서는 객체의 색상 정보와 차영상을 이용한 동영상 내 객체 추적 기법을 제안한다. 제안하는 기법은 연속적은 프레임 간에 객체의 색상 정보의 변화가 크지 않다는 것을 가정하여 비슷한 색상 정보를 찾아 현재 프레임의 객체 영역을 얻는다. 입력한 이전 프레임의 초기 객체 정보를 사용하여 객체와 배경의 색상 히스토그램을 구한다. 또한 현재 프레임과 이전프레임의 차영상을 생성한다. 마지막으로 객체와 배경의 색상 히스토그램과 차영상을 사용하여 현재 프레임의 각 화소를 객체 또는 배경 영역으로 구분하여 현재프레임의 객체 영역을 얻는다. 생성된 현재 프레임의 객체 정보는 다음 프레임의 객체 추적에서 다시 사용한다.
본 논문은 비모수적 클러스터링 기법을 이용하여 다양한 조명에 노출된 의상들의 색상 유사성을 안정적으로 판단하는 방법을 제안한다. 색상 유사성 판별을 위하여 기존에 대표적으로 사용되어왔던 히스토그램 인터섹션이나 누적 히스토그램 방법은 조명 변화에 민감하게 반응하여, 동일한 의상 색상이라 할지라도 서로 다른 조명환경에서는 서로 상이한 색상 판별 결과를 나타낸다. 본 논문에서는 조명에 의한 영향을 줄이고, 색상 자체의 분포 특성을 분석하기 위하여 조명조건의 변화에도 일관된 특성을 유지하는 색도와 채도 컬러 성분에 대한 분포 특성을 비모수적 클러스터링 기법을 적용하여 분석한다. 실험 결과 제안기법은 동일한 의상 쌍과 상이한 의상 쌍에 대하여 구분을 지을 수 있는 양자화의 특성이 뚜렷하게 표현되었다.
다시점 비디오의 조명 불일치 현상은 서로 다른 카메라의 위치와 카메라간의 불완전한 보정(calibration)으로 인하여 발생한다. 이러한 인접 시점간의 색상 불일치는 획득된 영상을 참조 영상으로 이용하여 부호화하는 다시점 비디오 부호화(multi-view video coding)의 성능을 저하시키는 요인이 된다. 이러한 조명 불일치를 보상하기 위한 방법 중에서 히스토그램 매칭(histogram matching)을 이용한 전처리 기법이 있다. 히스토그램 매칭을 통해 모든 시점 영상의 히스토그램은 정해진 참조 시점 영상의 히스토그램으로 매칭되어지고 다시점 비디오 부호화의 성능을 개선할 수 있다. 그러나 다시점 비디오 시퀀스는 카메라와 등장인물의 이동으로 인하여 시점 간 영상뿐만 아니라, 한 시점 내에 시간의 흐름에 따른 영상간의 히스토그램 분포가 서로 다를 수 있다. 참조 시점 시퀀스에 속한 모든 영상을 참조하는 기존의 히스토그램 매칭 기법은 시공간적으로 상관성이 높지 않은 영상의 조명을 효과적으로 보상하기에 적합하지 않다. 본 논문에서는 시점 영상 간의 색상 분포의 차이를 보이는 다시점 비디오를 보상하여 공간적 상관성을 높이기 위해 두 조건식이 반영된 영상분리 기법을 적용한 레이어별 히스토그램 매칭 기법과 시간의 흐름에 따라 색상 분포의 차이를 보이는 다시점 비디오를 비디오 부호화의 단위인 화면 그룹(group of pictures : GOP)별로 보상하여 시간적 상관성을 높이는 개별적인 히스토그램 매칭 기법을 제안한다. 실험을 통해 제안하는 조명 보상 기법이 기존의 조명 보상 기법보다 향상된 다시점 비디오 부호화 효율을 보이는 것을 확인하였다.
CCTV는 범죄 예방, 공공 안전 강화, 교통 관리 등 다양한 목적으로 사용된다. 그러나 카메라의 범위와 해상도가 향상됨에 따라 영상에서 개인의 신상정보가 노출되는 위험성이 있다. 따라서 영상에서 개인 정보를 보호함과 동시에 개인을 식별할 수 있는 새로운 기술의 필요성이 존재한다. 본 논문에서는 객체 식별 및 추적을 위한 히스토그램 기반 특이값 분해를 제안한다. 제안하는 방법은 객체의 색상 정보를 이용하여 영상에 존재하는 서로 다른 객체를 구분한다. 객체 인식을 위하여 YOLO와 DeepSORT를 이용해 영상에 존재하는 사람을 탐지 및 추출한다. 탐지된 사람의 위치 정보를 이용해 흑백 히스토그램으로 색상 값을 추출한다. 추출한 색상 값 중 유의미한 정보만을 추출하여 사용하기 위해 특이값 분해를 이용한다. 특이값 분해를 이용할 때 결과에서 상위 특이값의 평균을 이용함으로 객체 색상 추출의 정확도를 높인다. 특이값 분해를 이용해 추출한 색상 정보를 다른 영상에 존재하는 색상과 비교하며 서로 다른 영상에 존재하는 동일 인물을 탐지한다. 색상 정보 비교를 위해 유클리드 거리를 이용하며 정확도 평가는 Top-N을 이용한다. 평가 결과 흑백 히스토그램과 특이값 분해를 사용하여 동일 인물을 탐지할 때 최대 100%에서 최소 74%를 기록하였다.
본 논문에서는 효율적인 다시점 비디오 부호화를 위해 히스토그램(histogram)을 이용한 다시점 비디오의 휘도(luminance)와 색차(chrominance)성분 보상 기법을 제안한다. 다시점 비디오는 카메라의 기하학적인 위치 차이와 여러 대의 카메라가 동일한 특성을 가지도록 완벽히 조정되지 못함으로 인해 동일한 시간대에 촬영된 인접한 시점 영상 간에 휘도와 색상의 차이가 발생할 수 있다. 이러한 특성은 인접한 카메라로부터 획득된 영상을 참조하여 시점간 움직임 예측 시에 오정합의 원인이 되어 부호화 효율을 떨어뜨리게 된다. 본 논문에서는 효율적인 다시점 비디오 부호화를 위해 시점간의 히스토그램을 비교하여 정합하는 휘도 및 색차 보상 기법을 수행한다. 일정한 시간 대역(time interval)에서 다시점 비디오의 평균 누적 히스토그램을 이용하여 참조 영상을 생성하고 각 시점별로 정합 함수를 통해 다시점 영상 간의 휘도와 색상의 불일치성을 보상한다. 제안하는 조명 보상 기법을 통하여 다시점 비디오 부호화 효율을 높일 수 있었다.
영상 내 동전들의 금액 합계를 계산하는 새로운 동전 계산 시스템이 제안되었다. 제안된 시스템은 USB 카메라를 이용하여 획득한 영상에서 실시간으로 동전을 종류별로 식별하고, 분류한다. 기존의 동전 계산 시스템들은 대부분 크기 정보만을 이용하며, 객체의 크기 인식이 잘못되면 오분류가 발생한다. 특히, 구 10원은 50원이나 100원 동전과 크기가 비슷해서 오류가 날 확률이 높다. 따라서 제안한 기법은 크기 정보와 더불어 색상 히스토그램을 활용하여 동전 분류 과정에서 오류를 감소할 수 있다. 전체 2,290개의 동전 객체를 분류한 실험 결과에서, 크기 정보만을 이용하였을 때는, 평균 약 88.2%의 인식률을 보였다. 반면, 크기 정보와 색상 히스토그램을 이용하였을 때에는 인식률이 평균 약 99.3%를 나타내었다.
본 논문은 기존의 컬러 히스토그램 방법들의 단점을 극복하고자 객체 영역을 이용한 내용기반 영상 검색 방법을 제안한다. 기존 컬러 히스토그램 검색 방법들은 양자화 오류 등의 이유로 정확성이 떨어지고, 공간정보가 부족한 단점이 있다. 이를 해결하기 위해 제안 방법은 색상 정보를 HSV공간으로 변환하여 순수 색상 정보인 hue성분만을 양자화하여 히스토그램을 구해 명암, 이동, 회전 등에 강인한 검색 특징으로 사용한다. 한편 공간정보가 부족한 문제점을 해결하기위해 색상 특징과 영역간의 상관관계를 고려하여 객체영역을 선정한다. 선정된 객체 영역에서는 에지와 DC를 이용하여 검색한다. 자연 컬러 영상 1,000개를 가지고 실험한 결과 기존 방법들보다 precision과 recall이 우수하였다.
본 논문은 컬러 히스토그램과 ‘컬러 텍스쳐’을 이용하는 새로운 내용기반 영상 검색 기법을 제안한다. 제안한는 방법은 영상의 컬러 히스토그램을 k-means 군집화하여 얻은 컬러 벡터로 히스토그램을 대표하고, 각 대표 컬러 벡터를 중심으로 화소 색상과의 거리를 이용해 컬러 텍스처를 만든다. 그러므로, 컬러 텍스처란 영상의 컬러 히스토그램에 의해 두드러지는 텍스처 성분을 의미하며 본 논문에서는 컬러 텍스처를 Gaussian Markov Random Field (GMRF) 모델로 해석한다. 제안하는 알고리듬은 영역화와 같은 기하학적 정보를 추출하는 과정이 없으므로 고속의 검색에 적합하며, 기존의 컬러 히스토그램만을 이용한 기법이나 영상의 밝기 성분에서 나타나는 텍스처를 이용한 방법에 비해 효과적인 검색 결과를 나타낸다.
본 논문에서는 HSV 공간에서의 색상 히스토그램을 이용하여 분할을 수행하여 얻어진 색상 정보와 영상의 에지를 추출한 후 각각의 에지 포인트에 대한 기울기를 히스토그램으로 만들어서 얻어지는 형태 정보를 이용하여 색상 영상 데이터베이스 상에서 영상 검색을 수행할 수 있는 방법을 제시한다. 트레이드마크 영상 데이터베이스에 대해 영상 검색을 수행하여 기존의 영상 검색 방법과의 비교를 통하여 제안한 방법의 우수함을 보이고 일반 영상 데이터베이스의 검색에도 우수하게 적용 가능함을 제시하고자 한다.
기존에 얼굴인식이나 얼굴영역을 추출하는 방법들은 대부분 얼굴의 외곽선은 고려하지 않은 상태에서 얼굴의 특징인 눈, 코, 입 부분만을 추출하는 경우가 많아 정확한 얼굴을 추출하기가 어려웠다. 본 논문에서는 얼굴의 색상과 영역분할 기법(Region Segmentation technique)을 함께 사용해서 얼굴부분과 얼굴의 특징을 추출하여 보다 정확한 얼굴 부분을 분할하고자 한다. 얼굴추출방법을 대표색상 추출과정과 실제 영역을 분할하여 얼굴부분을 추출하는 과정으로 나누어 히스토그램을 이용하여 대표색상을 추출한 후, 영역분할 기법을 이용하여 대표색상을 포함하고 있는 영역에 대해 얼굴이라는 가정을 배제하고, 이미지들을 객체(Object)화 하여 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.