• Title/Summary/Keyword: 새그비

Search Result 2, Processing Time 0.014 seconds

Design Procedure of Stress Ribbon Pedestrian Bridges (스트레스 리본 보도교의 설계절차)

  • Han, Ki-Jang;Choi, Young-Goo;Park, Kyoung-Yong;Kim, Kee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2474-2480
    • /
    • 2013
  • A stress ribbon pedestrian bridge is the structure in which the axial force of prestressed deck, which is developed by introducing prestressed force into the thin deck with the very low value of span to deck-depth ratio which is installed on bearing cables with the specified sag, resists most of external loadings. Since the design of stress ribbon pedestrian bridges should be conducted by assuming the cross-section of deck, the area of bearing cables and post-tensioning cables, and the prestressed force of post-tensioning cables, it requires much more iterative processes than the design of general bridges. In this research, to minimize such iteration processes, regression equations which can reasonably assume the area of bearing cables and post-tensioning cables, and the prestressed force of post-tensioning cables, are suggested for the bridge length of 80m with the sag-span ratios of 1/30, 1/40, and 1/50.

Landscape Preference and Image Property according to Middle Span and Sag Ratio of the Suspension Bridge (현수교의 중앙경간과 새그비에 따른 경관선호도와 이미지특성 분석)

  • Jang, Young-Ju;Son, Seung-Neo;Kum, Ki-Jung;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • This study is aimed at suggesting a plan for creating a landscape environment by grasping a landscape preference according to the change of middle span and sag ratio which is a consideration factor when designing the suspension bridge representing long-span bridges and image property of the bridge while applying SD method to a relation between landscape preference and image factor, and a connection of design element with image factor. An analysis on landscape preference about the bridge landscape showed from what the longer the length of middle span, the extent of sag ratio of preference decreased, the longer the middle span low sag ratio was preferred and the higher the landscape preference became. In landscape preference and image factor, the attribute of sag ratio with high landscape preference was all positively correlated with "stability", "plasticity", and "aesthetic" but an influence of "plasticity" was insignificant. In the relation between design element and image factor, the factor of middle span and sag ratio was more related to the factor of "stability" and the lower the sag ratio and the longer the middle span, the higher the "stability" was rated. This result showed the image property of "plasticity" was insignificant among the one of preference in landscape and to highlight the one of "plasticity" a complementary experiment was done with a change in balance and symmetry elements not in proportional element of middle span and sag ratio. The result showed the image property of "plasticity" was more highlighted in the suspension bridge of 3-tower and different bilateral symmetry at sag, and when designing the landscape of suspension bridge later on, the elements of balance and symmetry as well as the proportional element should be considered and reflected in the design.