• Title/Summary/Keyword: 상황 센서

Search Result 1,748, Processing Time 0.029 seconds

Integration and Decision Algorithm for Location-Based Road Hazardous Data Collected by Probe Vehicles (프로브 수집 위치기반 도로위험정보 통합 및 판단 알고리즘)

  • Chae, Chandle;Sim, HyeonJeong;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.173-184
    • /
    • 2018
  • As the portable traffic information collection system using probe vehicles spreads, it is becoming possible to collect road hazard information such as portholes, falling objects, and road surface freezing using in-vehicle sensors in addition to existing traffic information. In this study, we developed a integration and decision algorithm that integrates time and space in real time when multiple probe vehicles detect events such as road hazard information based on GPS coordinates. The core function of the algorithm is to determine whether the road hazard information generated at a specific point is the same point from the result of detecting multiple GPS probes with different GPS coordinates, Generating the data, (3) continuously determining whether the generated event data is valid, and (4) ending the event when the road hazard situation ends. For this purpose, the road risk information collected by the probe vehicle was processed in real time to achieve the conditional probability, and the validity of the event was verified by continuously updating the road risk information collected by the probe vehicle. It is considered that the developed hybrid processing algorithm can be applied to probe-based traffic information collection and event information processing such as C-ITS and autonomous driving car in the future.

A Study on HCI Design based on Tactical Data Link integrated in KDDX Combat Management System for Korean-Type Mobile Fleet Control (차기구축함 전투관리체계에 통합된 전술데이터링크 기반의 한국형 기동함대 통제 HCI 설계에 관한 연구)

  • Song, Ha-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.482-492
    • /
    • 2019
  • The naval ship consists of a variety of classes, including patrol, frigate, destroyer and landing ship. There are various means of communication between combat ships belonging to the mobile fleet, including voice network, text message network and tactical data link. The operation at the existing mobile fleet level was conducted mainly on voice and text message, and tactical data link were used mainly to share tactical information between combat ships. This study intended to design HCI for commander like as KDDX of fleet level based on tactical data link, a means of communication between ships, to secure operational control of the mobile fleet. Recently, naval ships have been developed in the organization of various sensors, weapons and tactical data links integrated into the combat management system, and this study also designed the HCI based on the tactical data links integrated in the combat management system. The purpose of this study was to secure the operational efficiency of the tactical data link based on the combat management system in operation of the mobile fleet, and to improve the capability of the fleet commander to recognize the battlefield situation awareness.

A Secure and Lightweight Authentication Scheme for Ambient Assisted Living Systems (전천 후 생활보조 시스템을 위한 안전하고 경량화 된 인증기법)

  • Yi, Myung-Kyu;Choi, Hyunchul;Whangbo, Taeg-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2019
  • With the increase in population, the number of such senior citizens is increasing day by day. These senior citizens have a variety of care needs, but there are not enough health workers to look after them. Ambient Assisted Living (AAL) aims at ensuring the safety and health quality of the older adults and extending the number of years the senior citizens can live independently in an environment of their own preference. AAL provides a system comprising of smart devices, medical sensors, wireless networks, computer and software applications for healthcare monitoring. AAL can be used for various purposes like preventing, curing, and improving wellness and health conditions of older adults. While information security and privacy are critical to providing assurance that users of AAL systems are protected, few studies take into account this feature. In this paper, we propose a secure and lightweight authentication scheme for the AAL systems. The proposed authentication scheme not only supports several important security requirements needed by the AAL systems, but can also withstand various types of attacks. Also, the security analysis results are presented to show the proposed authentication scheme is more secure and efficient rather than existing authentication schemes.

A Study on Customized Smart Fire and Security System for one person household (1인 가구를 위한 맞춤형 스마트 화재 및 방범 시스템에 대한 연구)

  • Han, Hoonyoung;Kim, Gyunho;Ju, Minsu;Ko, Dongbeom;Kim, Jungjoon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.295-304
    • /
    • 2019
  • This paper introduces a customized Smart Fire and Crime system for one person households. Recently, the number of one person household has skyrocketed due to the increasing number of one person household and the aging population. As a result, the demand for private security companies for one person household is increasing and smart security systems that are applied with rapidly evolving IoT and sensor technologies are also becoming a major issue. However, despite the increasing trend of one person households, the existing system focuses on multiple households, so that there are disadvantages of the one person households to operate in such a big system which operate separately. Therefore, in this paper, we design and implement a system that provides a personalized safety service for one person household that integrates a security system and a fire monitoring system. This will help prevent criminal activity in places where the police can not reach at a lower cost than using existing private companies, and help monitor the situation of the houses in real time.

A Study on Realistic Interface Elements for Improving the Flow in Screen Golf (스크린골프의 몰입 향상을 위한 실감 인터페이스 요소 연구)

  • Doo, Kyungil
    • Journal of Industrial Convergence
    • /
    • v.19 no.1
    • /
    • pp.71-77
    • /
    • 2021
  • Screen Golf provides a more realistic interface to users by implementing sophisticated sensors and 3D graphics so that they can play golf in an environment almost identical to the actual golf course, to provide a sense of reality that goes beyond simply enjoying golf indoors. In addition, users who experienced this interface environment showed a tendency to feel the fun of golf more and become more immersed in golf. Therefore, it is most important to provide an effective realistic interface in screen golf. In this study, the meaning of screen golf as a tangible sport and various interface elements embodied in screen golf were summarized. Also the factors that enable users to feel reality and fun of actual golf to make users more immersed in screen golf were identified. For this, interface elements based on sensory elements were arranged in terms of visual, auditory, and tactile sense, and improvement plans and directions for providing effective sensory interfaces for screen golf were suggested through user FGI, targeting regular customers of Golfzone and KakaoVX screen golf, and in-depth interviews with experts. As a result of the analysis, it was confirmed that the course information including the yardage and the play situation-directed graphic are elements that make immersion in the visual aspect. In terms of tactile aspect, the fact that users actually use golf equipment, as well as the sense of existence of a physical interface that embodies various course environments and course setting appeared to be an important factor. In particular, in the auditory aspect, it was confirmed that providing customized services for each user through AI caddy implemented to resemble a actual caddy is the most effective way to immerse users in screen golf with greater fun and realism.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Fault Detection Method for Multivariate Process using Mahalanobis Distance and ICA (마할라노비스 거리와 독립성분분석을 이용한 다변량 공정 고장탐지 방법에 관한 연구)

  • Jung, Seunghwan;Kim, Sungshin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Multivariate processes, such as chemical and mechanical process, power plants are operated in a state where several facilities are complexly connected, the fault of a particular system can also have fatal consequences for the entire process. In addition, since process data is measured in an unstable environment, outlier is likely to be include in the data. Therefore, monitoring technology is essential, which can remove outlier from measured data and detect failures in advance. In this paper, data obtained from dynamic and multivariate process models was used to detect fault in various type of processes. The dynamic process is a simulation of a process with autoregressive property, and the multivariate process is a model that describes a situation when a specific sensor fault. Mahalanobis distance was used to remove outlier contained in the data generated by dynamic process model and multivariate process model, and fault detection was performed using ICA. For comparison, we compared performance with and a conventional single ICA method. The proposed fault detection method improves performance by 0.84%p for bias data and 6.82%p for drift data in the dynamic process. In the case of the multivariate process, the performance was improves by 3.78%p, therefore, the proposed method showed better fault detection performance.

A Study on Atmospheric Data Anomaly Detection Algorithm based on Unsupervised Learning Using Adversarial Generative Neural Network (적대적 생성 신경망을 활용한 비지도 학습 기반의 대기 자료 이상 탐지 알고리즘 연구)

  • Yang, Ho-Jun;Lee, Seon-Woo;Lee, Mun-Hyung;Kim, Jong-Gu;Choi, Jung-Mu;Shin, Yu-mi;Lee, Seok-Chae;Kwon, Jang-Woo;Park, Ji-Hoon;Jung, Dong-Hee;Shin, Hye-Jung
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.260-269
    • /
    • 2022
  • In this paper, We propose an anomaly detection model using deep neural network to automate the identification of outliers of the national air pollution measurement network data that is previously performed by experts. We generated training data by analyzing missing values and outliers of weather data provided by the Institute of Environmental Research and based on the BeatGAN model of the unsupervised learning method, we propose a new model by changing the kernel structure, adding the convolutional filter layer and the transposed convolutional filter layer to improve anomaly detection performance. In addition, by utilizing the generative features of the proposed model to implement and apply a retraining algorithm that generates new data and uses it for training, it was confirmed that the proposed model had the highest performance compared to the original BeatGAN models and other unsupervised learning model like Iforest and One Class SVM. Through this study, it was possible to suggest a method to improve the anomaly detection performance of proposed model while avoiding overfitting without additional cost in situations where training data are insufficient due to various factors such as sensor abnormalities and inspections in actual industrial sites.

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.

Evaluation of NDVI Retrieved from Sentinel-2 and Landsat-8 Satellites Using Drone Imagery Under Rice Disease (드론 영상을 이용한 Sentinel-2, Landsat-8 위성 NDVI 평가: 벼 병해 발생 지역을 대상으로)

  • Ryu, Jae-Hyun;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1231-1244
    • /
    • 2022
  • The frequency of exposure of field crops to stress situations is increasing due to abnormal weather conditions. In South Korea, large-scale diseases in representative paddy rice cultivation area were happened. There are limits to field investigation on the crop damage due to large-scale. Satellite-based remote sensing techniques are useful for monitoring crops in cities and counties, but the sensitivity of vegetation index measured from satellite under abnormal growth of crop should be evaluated. The goal is to evaluate satellite-based normalized difference vegetation index (NDVI) retrieved from different spatial scales using drone imagery. In this study, Sentinel-2 and Landsat-8 satellites were used and they have spatial resolution of 10 and 30 m. Drone-based NDVI, which was resampled to the scale of satellite data, had correlation of 0.867-0.940 with Sentinel-2 NDVI and of 0.813-0.934 with Landsat-8 NDVI. When the effects of bias were minimized, Sentinel-2 NDVI had a normalized root mean square error of 0.2 to 2.8% less than that of the drone NDVI compared to Landsat-8 NDVI. In addition, Sentinel-2 NDVI had the constant error values regardless of diseases damage. On the other hand, Landsat-8 NDVI had different error values depending on degree of diseases. Considering the large error at the boundary of agricultural field, high spatial resolution data is more effective in monitoring crops.