• 제목/요약/키워드: 상호참조 해결

검색결과 72건 처리시간 0.026초

한국어 대명사 및 한정 명사구에 대한 상호참조해결 (Coreference Resolution for Korean Pronouns and Definite Noun Phrases)

  • 박천음;최경호;이홍규;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.61-64
    • /
    • 2014
  • 본 논문은 Stanford의 다 단계 시브(Multi-pass Sieve) 상호참조해결을 기반으로, 한국어에 적용한 한국어 상호참조해결(선행 연구)을 이용하여 한정 명사구에 대한 처리와 확장된 대명사 상호참조해결 방법을 제안한다. 지시 관형사와 명사가 결합하여 형성되는 한정 명사구는 일반 멘션(mention)의 특징과 대명사 속성을 한 번에 갖게 된다. 이렇게 되면, 한정 명사구는 모든 시브(sieve)에서 상호참조를 진행할 수 있게 된다. 따라서 이런 특징으로 한정 명사구를 어떤 관점(멘션 또는 대명사)에서 상호참조해결하는 것이 좋은지 보인다. 또한 이런 한정 명사구의 대명사 속성을 이용하기 위해 문법적 의미적 규칙을 적용할 것을 제안한다. 그 결과, 본 논문의 선행 연구인 한국어 상호참조해결에 비하여 CoNLL 값이 약 0.8%만큼 향상되어 61.45%를 측정하였다.

  • PDF

형태소 수준의 한국어 상호참조해결 (Korean Coreference Resolution at the Morpheme Level )

  • 조경빈;최요한;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.329-333
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 End-to-End 모델이 주로 연구가 되었다. 그러나 End-to-End 방식으로 모델을 수행하기 위해서는 모든 스팬을 잠재적인 멘션으로 간주해야 되기 때문에 많은 메모리가 필요하고 시간 복잡도가 상승하는 문제가 있다. 본 논문에서는 서브 토큰을 다시 단어 단위로 매핑하여 상호참조해결을 수행하는 워드 레벨 상호참조해결 모델을 한국어에 적용하며, 한국어 상호참조해결의 특징을 반영하기 위해 워드 레벨 상호참조해결 모델의 토큰 표현에 개체명 자질과 의존 구문 분석 자질을 추가하였다. 실험 결과, ETRI 질의응답 도메인 평가 셋에서 F1 69.55%로, 기존 End-to-End 방식의 상호참조해결 모델 대비 0.54% 성능 향상을 보이면서 메모리 사용량은 2.4배 좋아졌고, 속도는 1.82배 빨라졌다.

  • PDF

대화 데이터셋에서 멘션 경계와 멘션 쌍을 이용한 상호참조해결 파이프라인 모델 (Coreference Resolution Pipeline Model using Mention Boundaries and Mention Pairs in Dialogues)

  • 김담린;박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.307-312
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 멘션을 추출하고 동일한 개체의 멘션들을 군집화하는 작업이다. 기존 상호참조해결 연구의 멘션탐지 단계에서 진행한 가지치기는 모델이 계산한 점수를 바탕으로 순위화하여 정해진 비율의 멘션만을 상호참조해결에 사용하기 때문에 잘못 예측된 멘션을 입력하거나 정답 멘션을 제거할 가능성이 높다. 또한 멘션 탐지와 상호참조해결을 종단간 모델로 진행하여 학습 시간이 오래 걸리고 모델 복잡도가 높은 문제가 존재한다. 따라서 본 논문에서는 상호참조해결을 2단계 파이프라인 모델로 진행한다. 첫번째 멘션 탐지 단계에서 후보 단어 범위의 점수를 계산하여 멘션을 예측한다. 두번째 상호참조해결 단계에서는 멘션 탐지 단계에서 예측된 멘션을 그대로 이용해서 서로 상호참조 관계인 멘션 쌍을 예측한다. 실험 결과, 2단계 학습 방법을 통해 학습 시간을 단축하고 모델 복잡도를 축소하면서 종단간 모델과 유사한 성능을 유지하였다. 상호참조해결은 Light에서 68.27%, AMI에서 48.87%, Persuasion에서 69.06%, Switchboard에서 60.99%의 성능을 보였다.

  • PDF

BERT 기반 End-to-end 신경망을 이용한 한국어 상호참조해결 (Korean End-to-end Neural Coreference Resolution with BERT)

  • 김기훈;박천음;이창기;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.181-184
    • /
    • 2019
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 같은 개체(entity)를 의미하는 멘션을 찾아 그룹화하는 자연어처리 태스크이다. 한국어 상호참조해결에서는 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델과 포인터 네트워크 모델을 이용한 방법이 연구되었다. 구글에서 공개한 BERT 모델은 자연어처리 태스크에 적용되어 많은 성능 향상을 보였다. 본 논문에서는 한국어 상호참조해결을 위한 BERT 기반 end-to-end 신경망 모델을 제안하고, 한국어 데이터로 사전 학습된 KorBERT를 이용하고, 한국어의 구조적, 의미적 특징을 반영하기 위하여 의존구문분석 자질과 개체명 자질을 적용한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터 셋에서 CoNLL F1 (DEV) 71.00%, (TEST) 69.01%의 성능을 보여 기존 연구들에 비하여 높은 성능을 보였다.

  • PDF

Continual learning을 이용한 한국어 상호참조해결의 도메인 적응 (Domain adaptation of Korean coreference resolution using continual learning)

  • 최요한;조경빈;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

긴 문서를 위한 BERT 기반의 End-to-End 한국어 상호참조해결 (Korean End-to-End Coreference Resolution with BERT for Long Document)

  • 조경빈;정영준;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.259-263
    • /
    • 2021
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델이 주로 연구되었으나, 512 토큰 이상의 긴 문서를 처리하기 위해서는 512 토큰 이하로 문서를 분할하여 처리하기 때문에 길이가 긴 문서에 대해서는 상호참조해결 성능이 낮아지는 문제가 있다. 본 논문에서는 512 토큰 이상의 긴 문서를 위한 BERT 기반의 end-to-end 상호참조해결 모델을 제안한다. 본 모델은 긴 문서를 512 이하의 토큰으로 쪼개어 기존의 BERT에서 단어의 1차 문맥 표현을 얻은 후, 이들을 다시 연결하여 긴 문서의 Global Positional Encoding 또는 Embedding 값을 더한 후 Global BERT layer를 거쳐 단어의 최종 문맥 표현을 얻은 후, end-to-end 상호참조해결 모델을 적용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 모델과 유사한 성능을 보이면서(테스트 셋에서 0.16% 성능 향상), GPU 메모리 사용량은 1.4배 감소하고 속도는 2.1배 향상되었다.

  • PDF

표층형을 이용한 BERT 기반 한국어 상호참조해결 (Korean Co-reference Resolution using BERT with Surfaceform)

  • 허철훈;김건태;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.67-70
    • /
    • 2019
  • 상호참조해결은 자연언어 문서 내에서 같은 개체를 나타내는 언급들을 연결하는 문제다. 대명사, 지시 관형사, 축약어, 동음이의어와 같은 언급들의 상호참조를 해결함으로써, 다양한 자연언어 처리 문제의 성능 향상에 기여할 수 있다. 본 논문에서는 현재 영어권 상호참조해결에서 좋은 성능을 내고 있는 BERT 기반 상호참조해결 모델에 한국어 데이터 셋를 적용시키고 표층형을 이용한 규칙을 추가했다. 본 논문의 모델과 기존의 모델들을 실험하여 성능을 비교하였다. 기존의 연구들과는 다르게 적은 특질로 정밀도 73.59%, 재현율 71.1%, CoNLL F1-score 72.31%의 성능을 보였다. 모델들의 결과를 분석하여 BERT 기반의 모델이 다양한 특질을 사용한 기존 딥러닝 모델에 비해 문맥적 요소를 잘 파악하는 것을 확인했다.

  • PDF

한국어 상호참조해결을 위한 BERT 기반 데이터 증강 기법 (BERT-based Data Augmentation Techniques for Korean Coreference Resolution)

  • 김기훈;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.249-253
    • /
    • 2020
  • 상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.

  • PDF

대화 데이터를 위한 멘션 탐지 및 상호참조해결 파이프라인 모델 (Mention Detection and Coreference Resolution Pipeline Model for Dialogue Data)

  • 김담린;김홍진;박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.264-269
    • /
    • 2021
  • 상호참조해결은 주어진 문서에서 상호참조해결의 대상이 될 수 있는 멘션을 추출하고, 같은 개체를 의미하는 멘션 쌍 또는 집합을 찾는 자연어처리 작업이다. 하나의 멘션 내에 멘션이 될 수 있는 다른 단어를 포함하는 중첩 멘션은 순차적 레이블링으로 해결할 수 없는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 멘션의 시작 단어의 위치를 여는 괄호('('), 마지막 위치를 닫는 괄호(')')로 태깅하고 이 괄호들을 예측하는 멘션 탐지 모델과 멘션 탐지 모델에서 예측된 멘션을 바탕으로 포인터 네트워크를 이용하여 같은 개체를 나타내는 멘션을 군집화하는 상호참조해결 모델을 제안한다. 실험 결과, 4개의 영어 대화 데이터셋에서 멘션 탐지 모델은 F1-score (Light) 94.17%, (AMI) 90.86%, (Persuasion) 92.93%, (Switchboard) 91.04%의 성능을 보이고, 상호참조해결 모델에서는 CoNLL F1 (Light) 69.1%, (AMI) 57.6%, (Persuasion) 71.0%, (Switchboard) 65.7%의 성능을 보인다.

  • PDF

랜덤 포레스트를 이용한 한국어 상호참조 해결 (Coreference Resolution for Korean Using Random Forests)

  • 정석원;최맹식;김학수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.535-540
    • /
    • 2016
  • 상호참조 해결은 문서 내에 존재하는 멘션들을 식별하고, 참조하는 멘션끼리 군집화하는 것으로 정보 추출, 사건 추적, 질의응답과 같은 자연어처리 응용에 필수적인 과정이다. 최근에는 기계학습에 기반한 다양한 상호참조 해결 모델들이 제안되었으며, 잘 알려진 것처럼 이런 기계학습 기반 모델들은 상호참조 멘션 태그들이 수동으로 부착된 대량의 학습 데이터를 필요로 한다. 그러나 한국어에서는 기계학습 모델들을 학습할 가용한 공개 데이터가 존재하지 않는다. 그러므로 본 논문에서는 다른 기계학습 모델보다 적은 학습 데이터를 필요로 하는 효율적인 상호참조 해결 모델을 제안한다. 제안 모델은 시브-가이드 자질 기반의 랜덤 포레스트를 사용하여 상호참조하는 멘션들을 구분한다. 야구 뉴스 기사를 이용한 실험에서 제안 모델은 다른 기계학습 모델보다 높은 0.6678의 CoNLL F1-점수를 보였다.