• 제목/요약/키워드: 상호정보 추출

검색결과 773건 처리시간 0.027초

공기정보를 이용한 단어 의미 중의성 해결 방안 (Word Sense Disambiguation Method Using Co-occurrence Information)

  • 박요셉;김경임;박혁로
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.177-178
    • /
    • 2010
  • 단어 의미 중의성은 자연언어처리 분야에서의 주요 관심 분야이다. 한국어에서의 단어 의미 중의성 문제는 다른 언어에 비하여 연구가 미흡한 상태이다. 기존 연구에서는 빈도 수에 기반한 공기 정보 벡터를 이용한 방법에서 처리되지 못하는 경우가 발생하였다. 또한 사전에 기반한 상위어 추출 시에 정형화된 형태가 아닌 경우에 어려움이 발생하였다. 본 논문에서는 상호정보량을 추가하여 공기 정보 처리 과정 시에 발생하는 오류를 최소화 하였다. 또한 대상 명사의 상위어 추출 문제를 해결하기 위해 어휘 지식 베이스를 적용하였다.

  • PDF

구문관계에 기반한 유전자 상호작용 인식 (Detection of Gene Interactions based on Syntactic Relations)

  • 김미영
    • 정보처리학회논문지B
    • /
    • 제14B권5호
    • /
    • pp.383-390
    • /
    • 2007
  • 단백질이나 유전자들 간의 상호작용 인식은 생물학적 현상의 기술에 있어서 필수적이고, 이러한 상호작용의 네트웍 파악은 생물학 접근의 시작이라고 할 수 있다. 최근에, 대량의 생물학 관련 문서로부터 자연언어처리 기술을 사용하여 이러한 정보를 추출하려는 연구들이 많이 등장했다. 또한 이전 연구들은 언어학적 정보가 문서로부터 유전자 상호작용을 자동으로 추출하는 데 있어서 유용하다고 주장하고 있다. 하지만 기존의 방법들은 정확률에 비해 재현율이 많이 낮아서 성능이 그다지 좋지 못했다. 정확률의 감소 없이 재현율의 성능향상을 위해, 이 논문은 생물학관련 문서에서 구문관계에 기반하여 유전자 상호작용을 인식하는 방법을 제안한다. 생물학 도메인에 관련된 전문지식 없이, 우리의 방법은 단지 적은 양의 학습데이터를 사용하여 효과적인 성능을 보인다. LLL05(ICML05 Workshop on Learning Language in Logic)에서 제공한 데이터 포맷을 그대로 사용하여, 상호작용하는 두 유전자 중 작용의 주체가 되는 유전자를 에이전트라 하고 상호 작용의 대상이 되는 유전자를 타겟이라 한다. 본 논문에서 제안하는 첫 단계에서, 에이전트와 타겟 유전자에 대한 유전자-전이 구문관계를 인식한다. 두 번째 단계에서, 유전자 간의 상호작용이 있음을 암시하는 용언리스트를 구축한다. 마지막 단계에서, 상호작용하는 것으로 인식된 두 유전자 중 어느 것이 에이전트이고 타겟인지를 판단하기 위해 구문관계의 방향 정보를 학습한다. LLL05 데이터를 사용한 실험결과에서, 본 논문에서 제안한 방법이 학습 데이터에 대해서는 88%의 F-measure 성능을 보였고, 테스트 데이터에 대해서는 70.4%의 F-measure 성능을 보였다. 이 결과는 기존의 방법들보다 훨씬 더 좋은 성능이다. 우리는 성능에 대한 각 단계의 공헌도를 실험하여, 첫 단계는 재현율 향상에 기여를 하고 두 번째와 세 번째 단계는 정확률 향상에 기여했음을 보인다.

언어 정보 획득을 위한 한국어 코퍼스 분석 도구 (A Korean Corpus Analysis Tool for Language Information Acquisition)

  • 이호;김진동;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1994년도 제6회 한글 및 한국어정보처리 학술대회
    • /
    • pp.297-304
    • /
    • 1994
  • 코퍼스는 기계 가독형으로 개장되어 있는 실제 사용 언어의 집합으로 자연어 처리에 필요한 여러 가지 언어 정보를 내재하고 있다. 이들 정보는 코퍼스 분석기를 이용하여 획득할 수 있으며 용례와 각종 통계 정보 및 확률 정보, 연어 목록 등은 코퍼스에서 추출할 수 있는 대표적인 언어 정보들이다. 그러나 기존의 한국어 코퍼스 분석 도구들은 용례 추출 기능만을 보유하여 활용 범위가 제한되어 있었다. 이에 본 논문에서는 대량의 한국어 코퍼스를 분석하여 용례뿐만 아니라 자연어 처리의 제분야에서 필요한 언어 정보들을 추출하는 방법에 대해 연구하였으며 이의 검증을 위해 KCAT(Korean Corpus Analysis Tool)를 구현하였다. KCAT는 코퍼스 색인, 용례 추출, 통계 정보 추출, 연어 추출 부분으로 구성되어 있다. 용례 색인을 위해서는 여러 가지 사전과 용례 색인 구조가 필요한데 KCAT에서는 가변 차수 B-Tree 구조를 이용하여 사전을 구성하며 용례 색인을 위해 버킷 단위의 역 화일 구조를 이용한다. 질 좋은 용례의 추출을 위해 KCAT는 다양한 용례 연산 및 정렬 기능을 제공한다. 또한 통계적 방법의 자연어 처리 분야를 위해 어휘 확률, 상태 전이 확률, 관측 심볼 확률, 상호 정보, T-score 등을 제공하며, 기계 번역 분야에서 필요한 연어를 추출한다.

  • PDF

바이오 문서에서 지지 벡터 기계를 이용한 문법관계 분석 (Grammatical Relation Analysis using Support Vector Machine in BioText)

  • 박경미;황영숙;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.287-292
    • /
    • 2003
  • 동사와 기본구 사이의 문법관계 분석은 품사부착과 기본구 인식이 수행된 상태에서, 동사와 의존관계를 갖는 기본구를 찾고 각 구의 구문적, 의미적 역할을 나타내는 기능태그를 인식하는 작업이다. 본 논문에서는 바이오 문서에서 단백질과 단백질, 유전자와 유전자 사이의 상호작용관계를 자동으로 추출하기 위해서 제안한 문법관계 분석 방법을 적용하고 따라서 동사와 명사고, 전치사고, 종속 접속사의 관계만을 분석하며 기능태그도 정보추출에 유용한 주어, 목적어를 나타내는 태그들로 제한하였다. 기능태그 부착과 의존관계 분석을 통합해 수행하였으며, 지도학습 방법 중 분류문제에서 좋은 성능을 보이는 지지 벡터 기계를 분류기로 사용하였고, 메모리 기반 학습을 사용하여 자질을 추출하였으며, 자료부족문제를 완화하기 위해서 저빈도 단어는 품사 타입 또는 워드넷의 최상위 클래스의 개념을 이용해서 대체하였다. 시험 결과지지 벡터 기계를 이용한 문법관계 분석은 실제 적용시 빠른 수행시간과 적은 메모리 사용으로 상호작용관계 추출에서 효율적으로 사용될 수 있음을 보였다.

  • PDF

사전에 나타난 인지정보를 이용한 단어 개념의 지식표현 (Knowledge Representation of Concept Word Using Cognitive Information in Dictionary)

  • 윤덕한;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.118-125
    • /
    • 2004
  • 인간의 언어지식은 다양한 개념 관계를 가지며 서로 망(network)의 모습으로 연결되어 있다. 인간의 언어지식의 산물 중에서 가장 체계적이며 구조적으로 언어의 모습을 드러내고 있는 결과물이 사전이라고 할 수 있다. 본 논문에서는 이러한 사전 뜻풀이 말에서 개념 어휘와 자동적인 지식획득을 통하여 의미 정보를 구조적으로 추출한다. 이러한 의미 정보가 추출되면서 동시에 자동적으로 개념 어휘의 의미 참조 모형이 구축된다. 이러한 것은 사전이 표제어 리스트와 표제어를 기술하는 뜻풀이말로 이루어진 구조의 특성상 가능하다. 먼저 172,000여 개의 사전 뜻풀이말을 대상으로 품사 태그와 의미 태그가 부여된 코퍼스에서 의미 정보를 추출하는데, 의미분별이 처리 된 결과물을 대상으로 하기 때문에 의미 중의성은 고려하지 않아도 된다. 추출된 의미 정보를 대상으로 정제 작업을 거쳐 정보이론의 상호 정보량(Ml)을 이용하여 개념 어휘와 의미 정보간에 연관도를 측정한 후, 개념 어휘간의 유사도(SMC)를 구하여 지식표현의 하나로 연관망을 구축한다.

  • PDF

인간의 생득적 능력에 기반한 이미지의 의미정보 추출방법 (A Concept Extraction Method for Image Based on Human's Natural Abilities)

  • 박형근;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.307-310
    • /
    • 2011
  • 최근 멀티미디어 데이터의 급속한 증가는 그를 대상으로 하는 다양한 컴퓨팅 기술의 발전을 가져왔다. 이러한 기술이 인간과의 상호 작용에서 그 양적 범위와 질적 깊이를 더해감에 따라, 멀티미디어 데이터 특히 그 중 가장 대표적이라 할 수 있는 이미지 데이터를 의미적으로 이해할 수 있는 방법의 필요성이 대두되고 있다. 이미지의 의미를 이해하기 위해 저수준(low level)의 시각 정보만을 이용하는 경우 인간과의 상호 작용에서 의미 격차(conceptual gap) 문제가 발생할 수 있다. 이미지 객체의 시각 정보들을 가공해서 온톨로지(ontology)와 같은 형태의 지식 베이스(knowledge base)와 연동하여 보다 고수준의 의미를 부여하는 경우에는 해당 도메인을 벗어난 새로운 환경에 대해 적응력과 강인함이 떨어진다. 이러한 문제를 근본적으로 해결하기 위해서는 지식 베이스가 없는 상태에서 이미지 데이터의 형태로 주어진 대상 객체로부터 의미를 부여할 수 있는 정보들을 추출해, 구조적으로 지식 베이스를 형성해 나가고 이를 토대로 대상 이미지 객체의 의미를 이해할 수 있는 시스템이 필요하다. 본 논문에서는 발달 심리학 이론들을 바탕으로 시각과 관련된 인간의 생득적 능력을 찾고, 이를 기반으로 우선 주어진 이미지 객체로부터 의미 정보를 효과적으로 추출할 수 있는 방법을 제안한다.

호스트 서버에서의 통합 에이전시 (Integrated Agency on the Host Server)

  • 신홍섭;오세만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.537-540
    • /
    • 2005
  • 휴대성을 가장 큰 장점으로 제공하는 모바일 장치는 모바일 장치를 위한 다양한 컨텐츠의 개발로 인해 관심이 주목되고 있다. 이러한 컨텐츠의 형식으로는 StandAlone 방식과 Network 방식이 있으며 근래에는 대부분의 컨텐츠들이 서버와의 통신을 통해 진행되는 후자를 따르고 있다. Network 방식의 컨텐츠는 서버와의 통신이 필수이기 때문에 별도의 서버와 함께 에이전트를 구현해야 한다. 모바일 장치에 탑재된 다양한 가상 기계와 수많은 컨텐츠들은 각각의 에이전트를 필요로 하며, 서버의 에이전트가 증가함에 따라 에이전트를 별도로 관리해야 하는 등의 문제점들이 발생하기 시작하였다. 본 논문에서는 이러한 문제점들을 해결하기 위한 방안으로서 통합된 형태의 에이전시를 제안하고자 한다. 제안된 에이전시는 모바일 장치의 가상기계와 컨텐츠의 종류에 상관없이 단 하나의 에이전시를 통해 상호간의 통신이 가능하다. 뿐만 아니라 서로 다른 모바일 장치와의 상호운용도 가능한 장점을 지닌다. 통합 에이전시는 접속 모듈과 함수 호출 모듈로 구성된다. 접속 모듈은 모바일 장치로부터 전송되는 전송정보 가운데 필요한 정보들을 추출하는 역할을 담당하며, 함수 호출 모듈은 접속 모듈에서 추출한 정보들을 이용하여 모바일 장치가 호출한 서버의 함수를 호출하는 역할을 담당한다.

  • PDF

UML 상태 다이어그램으로부터 클래스들간 상호 행동의 추출 (Extracting Interclass interactive behaviors from UML State Diagrams)

  • 이우진;김영곤;김흥남
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.1027-1030
    • /
    • 2000
  • 객체 지향 프로그램의 이해 및 테스팅을 효과적으로 수행하기 위해서는 객체 간의 상호 작용을 우선 이해하여야 한다. UML로 작성된 시스템 명세에서는 각각의 클래스에 대한 행동이 UML 상태 다이어그램으로 기술되어 있어 전체 시스템의 행동을 유추하는데 어려움이 따른다. 이 연구에서는 객체 지향 프로그램의 상태 다이어그램을 기반으로 객체간 행동 테스팅을 수행하기 위해서 UML 상태 다이어그램들을 합성하여 객체간 행동을 추출, 생성하는 과정을 기술한다. 추출, 합성된 객체간 행동 모델은 기존의 널리 알려진FSM 기반 테스팅 기법들을 그대로 이용할 수 있다.

  • PDF

객체 재사용성 향상을 위한 레거시 시스템 인터페이스기반 객체추출 기법 (A Technique of Object Extraction Based on the Legacy System Interface for the Improvement of Object Reusability)

  • 이창목;최성만;유철중;장옥배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.472-474
    • /
    • 2004
  • 본 연구는 레거시 시스템의 인터페이스 정보로부터 의미 있는 정보를 파악하여 새로운 시스템에 통합될 수 있도록 하기 위한 기존 레거시 시스템의 인터페이스에 기반한 객체추출 기법을 제안한다. 본 논문에서 제안하는 객체추출 기법은 인터레이스 사용사례 분석 단계, 인터페이스 객체 분할 단계, 객체구조 모델링 단계, 객체 모델 통합 단계 등 4단계로 구성되어 있다. 인터페이스 사용사례 분석 단계는 인터페이스 구조, 레거시 시스템과 사용자간의 상호작용 정보를 획득하는 단계이다. 인터페이스 객체분할 단계는 인터페이스 정보를 의미 있는 필드들로 구분하는 단계이며, 객체구조 모델링 단계는 인터페이스 객체들간의 구조적 관계와 협력 관계를 파악하여 모델링 하는 단계이다. 마지막으로 객체 모델 통합 단계는 객체 단위의 단위 모델들을 통합하여 추상화된 정보를 포함한 상위 수준의 통합 모델을 유도하는 단계다. 객체추출 기법에 의해 생성된 객체 통합 모델은 역공학 기술자들의 레거시 시스템 이해와 레거시 시스템의 정보를 새로운 시스템에 적용하는데 있어 효율성을 극대화할 수 있다.

  • PDF

바이오 문헌에서의 단백질, 유전자 객체 인식을 위한 특징 추출 (Feature Selection for Bio Named Entity Recognition from Biological Literature)

  • 김태욱;이미정;;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.166-168
    • /
    • 2012
  • 바이오 문헌으로부터의 의미 있는 객체 추출 및 상호작용 관계 추출은 수 많은 바이오 문헌으로부터 유용한 정보를 얻기 위한 필수적인 과정이다. 특히 문헌으로부터 유전자 또는 단백질 이름과 같은 바이오 객체를 정확하게 인지하는 것은 새로운 객체인식의 어려움과 객체를 찾기 위한 특징 패턴의 다양성으로 인해 도전적인 과제로 남아있다. 본 논문에서는 전처리 과정을 거친 문헌 데이터로부터 12개의 의미 있는 속성들을 선택하였다. 선택된 속성에 데이터마이닝 기법중 하나인 속성 추출 기법을 적용하여 객체를 분류하는데 있어 의미 있는 속성들을 추출하였다. 특징 추출 방법과 분류 알고리즘이 분류 성능에 미치는 영향을 평가하기 위해 각 방법의 정확도를 사용하여 분류 성능을 비교였으며, Gain Ratio Attribute Evaluation과 Symmetrical Uncertainty Attribute Evaluation 기법에 의해 추출된 속성이 가장 정확한 분류 성능을 보여주었다.