• Title/Summary/Keyword: 상향식 방법

Search Result 141, Processing Time 0.017 seconds

Tropospheric Ozone over the Seoul Metropolitan Area Derived from Satellite Observations (MODIS) and Numerical Simulation (위성관측(MODIS)에서 유도된 수도권 지역의 대류권 오존 및 수치실험)

  • Yoo Jung-Moon;Park Yoo-Min;Lee Suk-Jo
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.283-296
    • /
    • 2005
  • The effect of ozone and surface temperature on the ozone band at $9.7{\mu}m$ has been investigated from radiative transfer theory together with observations in order to derive empirical methods for remotely sensing ground-ozone concentration. Simultaneous observations of satellite (MODIS Aqua; ECT 13:30) and ground-ozone at 79 stations have been used over the Seoul Metropolitan Area (SMA; 125.7-127.2 E, 37.2-37.7 N) during four ozone-warning days in the year 2003. Cloud effect on the band in the methods was filtered out based on synoptic observations. Upwelling radiance values at $9.6{\mu}m$ which have been estimated at the given ozone concentration of 327-391 DU depend on surface temperature (Ts) showing $5.52\~5.78Wm^{-2}sr^{-1}\;at\;Ts = 290 K,\;and\;9.00\~9.57Wm^{-2}sr^{-1}$ Ts = 325K. Thus, the partitioned contributions of ozone and temperature to intensity of ozone absorption band are $0.26Wm^{-1}sr^{-1}/64\;DU\;and\;0.31 Wm^{-2}sr^{-1}/35K$, respectively. Here the intensity which has been used to remotely detect ground-ozone concentration from infrared satellite measurement is defined as the difference in brightness temperature between $11{\mu} m\;and\;9.7{\mu}m (i.e.,\; T_{11-9.7})$. The methods in this study have been applied to estimate ground-ozone from MODIS data in cases that there are significant correlations between the band intensity and ground-ozone. The values of estimated ozone significantly correlate (0.49-0.63) with ground observations at a significance level of $1\%$. For the improved methods, further study may be required to use tropospheric ozone rather than ground-ozone, considering the variation stratospheric ozone.