• Title/Summary/Keyword: 상품평가

Search Result 790, Processing Time 0.032 seconds

Effect of Packaging Systems with High CO2 Treatment on the Quality Changes of Fig (Ficus carica L) during Storage (저장 중 무화과(Ficus carica L) 선도유지를 위한 고농도 이산화탄소 처리된 포장 시스템 적용 연구)

  • Kim, Jung-Soo;Chung, Dae-Sung;Lee, Youn Suk
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.799-806
    • /
    • 2012
  • This experiment was conducted to establish the optimum conditions for high $CO_2$ gas treatment in combination with a proper gas-permeable packaging film to maintain the quality of fig fruit (Ficus carica L). Among the fig fruits with different high $CO_2$ treatments, the quality change was most effectively controlled during storage in the 70%-$CO_2$-treated fig fruit. Harvested fig fruit was packaged using microperforated oriented polypropylene (MP) film to maintain the optimum gas concentrations in the headspace of packaging for the modified-atmosphere system. MP film had an oxygen transmission rate of about $10,295cm^3/m^2$/day/atm at $25^{\circ}C$. The weight loss, firmness, soluble-solid content (SSC), acidity (pH), skin color (Hunter L, a, b), and decay ratio of the fig fruits were monitored during storage at 5 and $25^{\circ}C$. The results of this study showed that the OPP film, OPP film + 70% $CO_2$, and MP film+70% $CO_2$ were highly effective in reducing the loss rate, firmness and decay occurrence rate of fig fruits that were packaged with them during storage. In the case of using treatments with packages of OPP film and OPP film+70% $CO_2$, however, adverse effects like package bursting or physiological injury of the fig may occur due to the gas pressure or long exposure to $CO_2$. Therefore, the results indicated that MP film containing 70% $CO_2$ can be used as an effective treatment to extend the freshness of fig fruits for storage at a proper low temperature.

KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain (KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용)

  • Kim, Donggyu;Lee, Dongwook;Park, Jangwon;Oh, Sungwoo;Kwon, Sungjun;Lee, Inyong;Choi, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.191-206
    • /
    • 2022
  • Recently, it is a de-facto approach to utilize a pre-trained language model(PLM) to achieve the state-of-the-art performance for various natural language tasks(called downstream tasks) such as sentiment analysis and question answering. However, similar to any other machine learning method, PLM tends to depend on the data distribution seen during the training phase and shows worse performance on the unseen (Out-of-Distribution) domain. Due to the aforementioned reason, there have been many efforts to develop domain-specified PLM for various fields such as medical and legal industries. In this paper, we discuss the training of a finance domain-specified PLM for the Korean language and its applications. Our finance domain-specified PLM, KB-BERT, is trained on a carefully curated financial corpus that includes domain-specific documents such as financial reports. We provide extensive performance evaluation results on three natural language tasks, topic classification, sentiment analysis, and question answering. Compared to the state-of-the-art Korean PLM models such as KoELECTRA and KLUE-RoBERTa, KB-BERT shows comparable performance on general datasets based on common corpora like Wikipedia and news articles. Moreover, KB-BERT outperforms compared models on finance domain datasets that require finance-specific knowledge to solve given problems.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

A Study on the Types of Jazz Performance Audiences Using Q Methodology (Q 방법론을 적용한 재즈공연 관객의 유형에 관한 연구)

  • Jeong, Woo Sik
    • Korean Association of Arts Management
    • /
    • no.53
    • /
    • pp.5-45
    • /
    • 2020
  • This study aims to deeply analyze the subjective attitude of jazz performance audiences in Korea using Q methodology. In order to establish a population for the research, we decided 'People's mind about jazz performances' as the main topic and finally selected a Q model consist of 38 statements after having a depth interview with corresponding experts. Additionally, from January to February 2019, we implemented a Q-sorting and individual interview to total of 27 people including people majored in music, jazz club members and other citizens. The result were the following. First of all, a musical-interest oriented type. People of this type understood watching jazz performance as a daily leisure activity and went to watch a show more than once a month on overage. Those people obtained information of performances and actors before attending a show using social network such as SNS and jazz clubs. They also had a big desire to have an emotional interaction with jazz musicians while having a fan signing event or performance. Secondly, a general-interest oriented type. This type of people had a tendency of considering watching a jazz performance as a especial experience and not a daily life event. Attending a jazz performance was a novel experience which could be done with their close friends in a special day. Thirdly, people with self-value oriented type. This people were majored in jazz and classic in their universities. As they had a concrete perspective, professional knowledge and experiences, they were more sensitive on the general quality of the performances such as show's sound, light, video, sound system of the theater, player's ability, level of facilities, accessibility, etc. rather than the reputation of an artist. This research did not only revealed jazz audience's subjective tendency using Q methodology but also demonstrated the types of jazz audiences and their characteristics. Therefore, this could be a meaningful study for suggesting a significant implication for the marketing mix of performance planning on each jazz audience type.

Rethinking 'the Indigenous' as a Topic of Asian Feminist Studies (토착성에 기반한 아시아 여성주의 연구 시론)

  • Yoon, Hae Lin
    • Women's Studies Review
    • /
    • v.27 no.1
    • /
    • pp.3-36
    • /
    • 2010
  • This paper is based on the certain point that 'the indigenous', which have long been occupied by the Asian patriarchy or the local communities, now calls for the repositioning in the feminist context. 'The indigenous', in one part, generally refer to the matured long-standing traditions and practices of certain regional, or local communities, as a mode of a place specific way of endowing the world with integral meaning. In the narrow definition, it points to the particular form of placed based knowledge for survival, for example, the useful knowledge of a population who have lived experiences of the environment. In the other part, 'the indigenous' could be criticized in the gender perspectives because it has been served as an ideological tool for patriarchy and sexism, which have undermined women's body and subjectivity in the name of the Asian traditional community. That's why the feminists with sensitivity to the discourses of it, may perceive it very differently, still hesitating dealing with the problem. However, even if there are tendencies that the conservatives romanticize local traditions and essentialize 'the indigenous', as it were, it does not exist 'out there'. Then, it could be scrutinized in the contemporary context which, especially, needs to seek the possibility towards the alternatively post - develope mental knowledge system. In the face of global economic crisis which might be resulted from the instrumentalized or fragmented knowledge production system, it's holistic conceptions that human, society, and nature should not be isolated from each other. is able to give an insightful thinking. It will work in the restraint condition that we reconceptualize the indigenous knowledge not as an unchanging artefact of a timeless culture, but as a dynamic, living and culturally meaningful system towards the ecofeminstic indigenous knowledge. And then, indigenous renaissance phenomena which empower non-western culture and knowledge system and generate increased consciousness of cultural membership. Thus, this paper argues that the indigenous knowledges which have been underestimated in the western-centered knowledge-power relations, could be reconstructed as a potential resources of ecological civility transnationally which reconnect individuals and societies with nature.

A Study on the Effect of the Third-Party Award Winning Advertisement on Consumer's Pre-Purchase Intention (제 3 기관 수상(Award Winning) 광고가 소비자 구매의도에 미치는 영향에 관한 연구 - 마케팅 변수들의 조절 효과를 중심으로 -)

  • Jeon, Hoseong
    • Asia Marketing Journal
    • /
    • v.10 no.1
    • /
    • pp.25-64
    • /
    • 2008
  • Third-Party awards are growing in popularity. They are the hit product of the year chosen by The Korea Economic Daily, the best 10 products of the year chosen by Sports paper, the best hit product chosen by consulting firm and the best venture company of the year chosen by Information and Communication Ministry. Then these questions may be followed. Why industry likes this type of advertisement? Does this type of advertisement influences consumers' purchase intention? And if it does, how? Many researchers have been interested in external cue of product quality by focusing research effort on brand, price, producer, warranty etc. However, important but under-explored area is the role of third-party reference for signaling product quality. This paper comes from the idea that the third-party reference may signal consumers like manufacturer brand, product brand, product price, and shop brand. We develop a related theories to address research questions and drive some research hypotheses based on the previous studies probing source credibility, attribution, and signal theory. We put more emphasis on source credibility. We conducted the research based on 3x2x2x2 between group factorial design to explore causal relationship between the third party award winning advertising(real, fictional, no) and the purchase intention of consumers exposed to other information simultaneously such as product type(experience, search), distribution channel(direct, indirect) and perceived price(high, low). Since subjects are divided into 2 groups based on the means of response without extra experimental stimulus in case of perceived price. 12 different advertisements are used for conducting this study. The results are followings. First, the source credibility of the third party goes up, consumers' purchase intention would go up. It seems that consumers think the credibility of the third-party most when they are exposed to the third party award winning advertisement. Second, the product type does moderate the relationship between the third-party award winning advertisement and purchase intention. And the type of the distribution channel also moderates this relationship. The consumers' purchase intention goes up higher when they buy experience good and there is significant difference of purchase intention when consumers are exposed to direct channel treatment condition. But, perceived price has nothing to do with the third-party winning advertisement context for raising consumer intention to buy advertised product.

  • PDF

K-POP fandom and Korea's national reputation: An analysis on BTS fans in the U.S. (K-POP 팬덤과 한국의 국가 명성: 미국의 BTS 팬 중심 분석)

  • Soojin Kim;Hye Eun Lee
    • Public Diplomacy: Theory and Practice
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • Objectives: This study aims to discover how the spread of K-POP and the diversification of the Korean Wave affects Korea's national reputation. K-POP stars are diversifying their interactions with fandom by creating an online space to consume various products and services related to their stars and engage in fan activities. Because of this, this study aims to examine the relevance of K-POP to national reputation through a parasocial relationship with K-POP stars by fandom forming a community and utilizing media. Methods: An online survey was conducted in English using the Amazon survey company Mechanical Turk for BTS fans living in the United States. A total of 195 people's data, excluding incomplete responses, were used for the analysis. Results: It was found that BTS fans' social media participation activities themselves did not directly affect Korea's national reputation. But the mediating effect of BTS fans' parasocial relationship was found. That is, BTS fans' social media participation activities had a positive effect on their parasocial relationships with BTS which in turn had a positive effect on their national reputation. Conlusions: The use and participation of BTS fans in social media in Korea's national reputation has no significant effect on itself, but it has been found that it affects the national reputation through forming parasocial relationships. From the study results, the parasocial relationship of K-POP fans can be used as a strategic mechanism to enhance the national image and Korea's national reputation.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.