온라인상점의 상품추천시스템은 일대일마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 대부분의 상품추천시스템은 시시각각 변화하는 소비자의 기호에 따라 상품을 어떻게 추천할 것인가에 대한 문제에 직면해 있다. 본 연구에서는 급변하는 온라인상점 환경에 탄력적으로 대응하기 위하여 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 제안하는 상품추천시스템은 현재 운영중인 온라인상점 데이터로 프로토타입을 구축하고 실제 소비자에 대한 적용가능성을 검증하였으며, 그 결과 실제 유용할 것으로 확인되었다.
본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 정보 데이터베이스와 추천 엔진으로 이루어지며 사용자에게 질문을 던져서 사용자의 조건을 수집한 다음, 이를 상품 정보와 비교하여 가장 최적의 상품을 추천한다. 추천 시스템에서는 특정 상품이 사용자의 조건과 얼마나 일치하는지를 점수로 표시하고 이들 점수를 모든 상품에 대하여 계산한 다음, 가장 높은 점수를 얻은 상품을 추천하게 된다. 이 시스템의 장점은 조건에 정확히 부합하는 상품이 없는 경우에도 가장 조건과 많이 일치하는 상품을 추천할 수 있다는 것이다. 또한 하나의 관점이 아닌 서로 다른 관점을 가지고 있는 여러 전문가가 추천하는 것처럼 본 상품 추천 시스템도 3가지에서 최적의 상품을 추천한다. 하나의 예로 핸드폰을 추천하는 인터넷 사이트를 구축하고 테스트하였다.
전자상거래의 확산에 따라 인터넷 쇼핑몰에서의 구매활동은 일반적인 현상이 되었다. 그 결과, 유사한 업종이나 업태의 인터넷 쇼핑몰이 범람하게 되었고 업체들 간의 경쟁도 심화되어 차별화된 서비스를 제공하지 않는 업체는 도태되기 쉬운 상황이다. 본 연구에서는 치열한 경쟁환경 하에서 인터넷 쇼핑몰의 차별화된 마케팅 서비스의 수단으로써 이용되고 있는 상품추천시스템의 개선된 모형을 제시하고자 한다. 본 연구에서 제안하는 모형은 전역 최적화 기법 중의 하나인 유전자 알고리즘을 데이터 마이닝의 도구로 활용한 인터넷 쇼핑몰에서의 개인화된 상품추천시스템 모형이다. 유전자 알고리즘은 추출하기가 어려운 소비자의 성향을 데이터를 통해 추출하고 이에 맞는 상품군을 선택할 수 있도록 해주는 최적화 기법으로 상품추천시스템의 추천엔진으로써 유용할 것으로 기대된다. 본 연구에서는 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.
소비자가 최적의 상품을 선택하기 위해서는 충분한 상품정보를 파악하여 상품정보를 일일이 조사해야하는 번거로움이 생긴다. 이러한 문제점을 해결하기 위하여 여러 가지 상품추천방법이 제안되고 있으나 상품추천 과정에서 고객의 기호 변화를 다루는 연구가 부족하다. 본 논문에서는 소비자의 기호 변화에 적응하는 개인화 된 상품 추천을 위하여 베이지안 네트워크를 모델링하여 상품 구매에 따르는 선호도를 분석하고, 추천된 상품에 대한 사용자의 행동으로 관심 정도를 측정하여 추천 리스트를 제공한다.
본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 추천의 2 가지 방법인 지식기반 상품 추천 방법과 collaborative filtering을 혼합하였으며 먼저 고객에게 질문을 던져서 고객의 요구 조건을 수집한 다음, 요구 조건과 상품 데이터베이스에 저장된 상품정보와 일치도를 계산하여 추천 후보 상품 리스트를 생성한다. 이 추천 상품 리스트에 속하는 상품에 대해서는 다시 collaborative filtering 방법이 적용된다. 즉, 비슷한 취향을 가지는 고객들이 높이 평가하는 제품들을 최종적으로 고객들에게 추천하게 된다. 이 방법은 기존의 방법들이 모두 특정한 상품 카테고리에 대해서만 효과적인데 데하여 제안된 방법은 모든 상품 카테고리에 적용할 수 있으며 collaborative filtering 방법을 후보 추천 상품에 대해서만 적용시킴으로써 이 방법의 단점인 많은 계산량을 줄일 수 있다. 제안된 시스템은 EJB(Enterprise Java Beans)를 사용하여 컴포넌트로 구현되었으며 이동통신기기 카테고리에 대하여 시험 구현되었다.
상품추천시스템은 고객들에게 추천 상품 리스트를 만들어 고객들이 구매 가능성이 있는 상품을 쉽게 찾도록 도와주는 개인화 된 정보필터링 기술이다 협업 필터링(collaborative filtering)이 가장 성공적인 상품추천 기법으로 알려져 있으며 많이 이용되고 있다. 그러나, 인터넷 쇼핑몰에서 관리하는 상품과 고객의 수가 급속히 증가하면서 협업필터링에 기반 한 상품추천 시스템은 입력데이터의 희박성(Sparsity) 문제와 시스템 확장성(Scalability) 문제가 노출되고 있다. 따라서 본 연구에서는 협업필터링 기반 상품추천시스템의 상품추천 효과 및 성능을 개선하기 위해 웹 마이닝과 군집분석 기법에 기반을 둔 개인별 상품추천 방법론을 개발한다. 또한 실제 인터넷 쇼핑몰에서 개인별로 상품을 추천할 때 개발된 상품추천 방법론을 적용하여 다른 기존 상품추천 방법론과 실험적으로 비교함으로써 개발 방법론의 효과 및 성능을 검증한다.
규칙기반의 상품추천시스템은 많은 인터넷 쇼핑몰에서 활용되고 있지만 규칙을 추출할 수 있는 마케팅 전문가 확보와 방대한 양의 고객 데이터 처리의 어려움으로 유용한 규칙을 찾는 것이 매우 어렵다. 본 연구에서는 이러한 규칙기반 상품추천시스템의 단점을 보완할 수 있는 방법으로 전역 최적화 기법의 하나인 유전자 알고리즘을 활용하여 고객정보를 토대로 추천 규칙을 도출할 수 있는 방안을 제시한다. 또한 본 연구에서 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.
전자상거래의 급속한 발달로 인하여 많은 상품이 거래가 되로 있다. 기업은 상품들 가운데서 적절한 상품을 고객에게 추천하기 위해서 추천시스템을 개발을 하였다. 그러나 사용자와 고객의 수가 급증하면서 추천을 위해서 많은 시간과 비용이 들게 되었다. 본 논문에서는 이러한 확장성의 문제점을 해결하기 위해서 속성추출방법을 추천시스템에 적용하여 추천의 시간을 단축하여 확장성의 문제를 해결하고자 개선된 추천시스템을 개발했다. 개선된 추천시스템의 추천속도는 기존의 추천시스템에 비하여 빠른 추천이 가능하게 되었다. 이로 인해 확장성의 문제를 해결할 수 있게 되었다.
추천 시스템은 방문 고객 개개인의 취향이나 구매이력 등을 분석하여 고객이 필요로 하는 상품 또는 컨텐츠 정보의 서비스를 제공한다. 기존의 추천 시스템은 온라인에 초점을 맞추어 설계되었는데 본 논문에서는 무선 인터넷 서비스를 기반으로 무선 단말기(e.g. PDA, Cell Phone 등)를 통해 오프라인에서도 추천정보를 제공하는 시스템을 제안한다. 사용자에게 제공이 되는 추천 정보는 상품이나, 컨텐츠 또는 이벤트 정보이며 제안된 시스템에서는 데이터 마이닝 기법을 통해 데이터를 분류, 측정 및 예측하고 지식 기반방법과 collaborative filtering 방법을 혼합하여 양쪽의 장점만을 취하여 기존의 한정된 상품에 대한 정보와 침상에서만 제공이 되는 서비스를 오프라인까지 통합한 추천 시스템을 제안한다.
인터넷 및 전자상거래의 급속한 발전에 따라, 전자상거래를 위한 수많은 상품정보가 생성, 수정, 삭제되고 있는 상황에서 소비자들을 위한 맞춤형 정보서비스 및 개별화된 상품추천 시스템에 대한 필요성이 증가되고 있고 많은 연구가 이루어지고 있다. 그러므로 본 논문에서는 이러한 요구를 수용할 수 있는 소비자 지향형 상품추천 시스템을 제안한다. 제안된 시스템은 사용자행위의 모니터 링을 통해 사용자의 관심분야 및 다수의 사용자가 관심을 가지는 상품정보를 추출하며 이를 기반으로 사용자에게 추천함으로써 양질의 정보 및 서비스의 제공에 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.