• Title/Summary/Keyword: 상품추천시스템

Search Result 294, Processing Time 0.023 seconds

데이터마이닝과 다중모형조합기법을 이용한 온라인상점 상품추천시스템 개발

  • 이연경;김경재
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.340-348
    • /
    • 2004
  • 온라인상점의 상품추천시스템은 일대일마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 대부분의 상품추천시스템은 시시각각 변화하는 소비자의 기호에 따라 상품을 어떻게 추천할 것인가에 대한 문제에 직면해 있다. 본 연구에서는 급변하는 온라인상점 환경에 탄력적으로 대응하기 위하여 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 제안하는 상품추천시스템은 현재 운영중인 온라인상점 데이터로 프로토타입을 구축하고 실제 소비자에 대한 적용가능성을 검증하였으며, 그 결과 실제 유용할 것으로 확인되었다.

  • PDF

The Implementation of Recommender System for Internet Shopping Mall Using Multiple View Points (인터넷 쇼핑몰에서의 다양한 관점을 가지는 상품 추천 시스템의 구현)

  • Chun, In-Gook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.1021-1024
    • /
    • 2001
  • 본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 정보 데이터베이스와 추천 엔진으로 이루어지며 사용자에게 질문을 던져서 사용자의 조건을 수집한 다음, 이를 상품 정보와 비교하여 가장 최적의 상품을 추천한다. 추천 시스템에서는 특정 상품이 사용자의 조건과 얼마나 일치하는지를 점수로 표시하고 이들 점수를 모든 상품에 대하여 계산한 다음, 가장 높은 점수를 얻은 상품을 추천하게 된다. 이 시스템의 장점은 조건에 정확히 부합하는 상품이 없는 경우에도 가장 조건과 많이 일치하는 상품을 추천할 수 있다는 것이다. 또한 하나의 관점이 아닌 서로 다른 관점을 가지고 있는 여러 전문가가 추천하는 것처럼 본 상품 추천 시스템도 3가지에서 최적의 상품을 추천한다. 하나의 예로 핸드폰을 추천하는 인터넷 사이트를 구축하고 테스트하였다.

  • PDF

데이터 마이닝을 이용한 인터넷 쇼핑몰 상품추천시스템

  • Kim, Gyeong-Jae;Kim, Byeong-Guk
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.258-265
    • /
    • 2005
  • 전자상거래의 확산에 따라 인터넷 쇼핑몰에서의 구매활동은 일반적인 현상이 되었다. 그 결과, 유사한 업종이나 업태의 인터넷 쇼핑몰이 범람하게 되었고 업체들 간의 경쟁도 심화되어 차별화된 서비스를 제공하지 않는 업체는 도태되기 쉬운 상황이다. 본 연구에서는 치열한 경쟁환경 하에서 인터넷 쇼핑몰의 차별화된 마케팅 서비스의 수단으로써 이용되고 있는 상품추천시스템의 개선된 모형을 제시하고자 한다. 본 연구에서 제안하는 모형은 전역 최적화 기법 중의 하나인 유전자 알고리즘을 데이터 마이닝의 도구로 활용한 인터넷 쇼핑몰에서의 개인화된 상품추천시스템 모형이다. 유전자 알고리즘은 추출하기가 어려운 소비자의 성향을 데이터를 통해 추출하고 이에 맞는 상품군을 선택할 수 있도록 해주는 최적화 기법으로 상품추천시스템의 추천엔진으로써 유용할 것으로 기대된다. 본 연구에서는 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.

  • PDF

A Personalized Recommender Agent Using Bayesian Network (베이지안 네트워크를 이용한 개인화 된 상품 추천 에이전트)

  • Park, Jin-Hui;Jeong, Hwan-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • 소비자가 최적의 상품을 선택하기 위해서는 충분한 상품정보를 파악하여 상품정보를 일일이 조사해야하는 번거로움이 생긴다. 이러한 문제점을 해결하기 위하여 여러 가지 상품추천방법이 제안되고 있으나 상품추천 과정에서 고객의 기호 변화를 다루는 연구가 부족하다. 본 논문에서는 소비자의 기호 변화에 적응하는 개인화 된 상품 추천을 위하여 베이지안 네트워크를 모델링하여 상품 구매에 따르는 선호도를 분석하고, 추천된 상품에 대한 사용자의 행동으로 관심 정도를 측정하여 추천 리스트를 제공한다.

  • PDF

Hybrid Product Recommender System far Internet Shopping Mall (인터넷 쇼핑몰을 위한 하이브리드 상품 추천 시스템)

  • 천인국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.321-324
    • /
    • 2001
  • 본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 추천의 2 가지 방법인 지식기반 상품 추천 방법과 collaborative filtering을 혼합하였으며 먼저 고객에게 질문을 던져서 고객의 요구 조건을 수집한 다음, 요구 조건과 상품 데이터베이스에 저장된 상품정보와 일치도를 계산하여 추천 후보 상품 리스트를 생성한다. 이 추천 상품 리스트에 속하는 상품에 대해서는 다시 collaborative filtering 방법이 적용된다. 즉, 비슷한 취향을 가지는 고객들이 높이 평가하는 제품들을 최종적으로 고객들에게 추천하게 된다. 이 방법은 기존의 방법들이 모두 특정한 상품 카테고리에 대해서만 효과적인데 데하여 제안된 방법은 모든 상품 카테고리에 적용할 수 있으며 collaborative filtering 방법을 후보 추천 상품에 대해서만 적용시킴으로써 이 방법의 단점인 많은 계산량을 줄일 수 있다. 제안된 시스템은 EJB(Enterprise Java Beans)를 사용하여 컴포넌트로 구현되었으며 이동통신기기 카테고리에 대하여 시험 구현되었다.

  • PDF

Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls (인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.177-191
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is the most successful recommendation technology. Web usage mining and clustering analysis are widely used in the recommendation field. In this paper, we propose several hybrid collaborative filtering-based recommender procedures to address the effect of web usage mining and cluster analysis. Through the experiment with real e-commerce data, it is found that collaborative filtering using web log data can perform recommendation tasks effectively, but using cluster analysis can perform efficiently.

  • PDF

A personalized recommender system using genetic algorithms (유전자 알고리즘을 활용한 개인화된 상품추천시스템 개발)

  • 김병국;김경재
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.657-660
    • /
    • 2004
  • 규칙기반의 상품추천시스템은 많은 인터넷 쇼핑몰에서 활용되고 있지만 규칙을 추출할 수 있는 마케팅 전문가 확보와 방대한 양의 고객 데이터 처리의 어려움으로 유용한 규칙을 찾는 것이 매우 어렵다. 본 연구에서는 이러한 규칙기반 상품추천시스템의 단점을 보완할 수 있는 방법으로 전역 최적화 기법의 하나인 유전자 알고리즘을 활용하여 고객정보를 토대로 추천 규칙을 도출할 수 있는 방안을 제시한다. 또한 본 연구에서 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.

  • PDF

Development of a Collaborative Recommendation System using feature selection (속성추출을 이용한 협동적 추천시스템의 개발)

  • Yoo, Sang-Jong;Kwon, Young-S
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.467-472
    • /
    • 2002
  • 전자상거래의 급속한 발달로 인하여 많은 상품이 거래가 되로 있다. 기업은 상품들 가운데서 적절한 상품을 고객에게 추천하기 위해서 추천시스템을 개발을 하였다. 그러나 사용자와 고객의 수가 급증하면서 추천을 위해서 많은 시간과 비용이 들게 되었다. 본 논문에서는 이러한 확장성의 문제점을 해결하기 위해서 속성추출방법을 추천시스템에 적용하여 추천의 시간을 단축하여 확장성의 문제를 해결하고자 개선된 추천시스템을 개발했다. 개선된 추천시스템의 추천속도는 기존의 추천시스템에 비하여 빠른 추천이 가능하게 되었다. 이로 인해 확장성의 문제를 해결할 수 있게 되었다.

  • PDF

A Design of Recommendation System based on Context-Awareness (컨텍스트 인식 기반 상품 추천 시스템의 설계)

  • 이송희;이근호;김정범;김태윤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.52-54
    • /
    • 2002
  • 추천 시스템은 방문 고객 개개인의 취향이나 구매이력 등을 분석하여 고객이 필요로 하는 상품 또는 컨텐츠 정보의 서비스를 제공한다. 기존의 추천 시스템은 온라인에 초점을 맞추어 설계되었는데 본 논문에서는 무선 인터넷 서비스를 기반으로 무선 단말기(e.g. PDA, Cell Phone 등)를 통해 오프라인에서도 추천정보를 제공하는 시스템을 제안한다. 사용자에게 제공이 되는 추천 정보는 상품이나, 컨텐츠 또는 이벤트 정보이며 제안된 시스템에서는 데이터 마이닝 기법을 통해 데이터를 분류, 측정 및 예측하고 지식 기반방법과 collaborative filtering 방법을 혼합하여 양쪽의 장점만을 취하여 기존의 한정된 상품에 대한 정보와 침상에서만 제공이 되는 서비스를 오프라인까지 통합한 추천 시스템을 제안한다.

  • PDF

Design of Merchandise Recommender System For Support a Personalized Merchandise information (개별화원 상품정보 제공을 위한 상품 추천 시스템 설계)

  • 서태원;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.55-59
    • /
    • 2002
  • 인터넷 및 전자상거래의 급속한 발전에 따라, 전자상거래를 위한 수많은 상품정보가 생성, 수정, 삭제되고 있는 상황에서 소비자들을 위한 맞춤형 정보서비스 및 개별화된 상품추천 시스템에 대한 필요성이 증가되고 있고 많은 연구가 이루어지고 있다. 그러므로 본 논문에서는 이러한 요구를 수용할 수 있는 소비자 지향형 상품추천 시스템을 제안한다. 제안된 시스템은 사용자행위의 모니터 링을 통해 사용자의 관심분야 및 다수의 사용자가 관심을 가지는 상품정보를 추출하며 이를 기반으로 사용자에게 추천함으로써 양질의 정보 및 서비스의 제공에 있다.

  • PDF