본 논문에서는 Nakagami-m 페이딩 채널을 Finite-State Markov Channel (FSMC)로 모델링하고, 채널 상태 변화에 따른 통신 시스템의 성능을 분석하였다. 고려한 FSMC 모델에서는 수신 신호의 신호 대 잡음 전력비를 유한개의 구간으로 나눠 각각의 구간을 Markov 체인의 상태로 대응한다. 각 상태는 무기억 이진 대칭 통신로로 가정하고, 한 상태에서 다른 상태로의 천이는 Markov 천이를 따른다고 가정한다. 수치 해석을 통해 각 상태에 있어서의 평균 심볼 오율, 정상 상태 확률 그리고 상태 천이 확률을 구하여 FSMC 모델을 구성하였고, 상태 천이 지수를 변경함으로써 여러 페이딩 환경을 FSMC 모델로 나타낼 수 있음을 확인하였다. 상태 천이 지수가 클 경우인 빠른 페이딩 채널에서는 채널이 i.i.d. 특성을 나타내게 되며, 상태 천이 지수가 작을 경우인 느린 페이딩 채널은 인접한 상태로의 천이만 발생하는 간단한 FSMC 모델로 표현될 수 있음을 확인하였다. 마지막으로 제안한 FSMC 모델의 응용 예로써, 여러 채널 환경에서 랜덤 에러 정정 부호의 부호화 이득의 차이를 컴퓨터 시뮬레이션을 통해 비교, 분석하였다.
현재 이용되고 있는 위상 변위 마스크, 즉 Cr 계열의 마스크나 MoSiON 마스크는 DUV지역에서 낮은 굴절률을 갖는다. 그 겯과 마스크의 두께가 90 nm 이상이 되고, 웨이퍼에서 패턴 형성 시 에러율이 증가하게 된다. 본 연구에서는 DUV 지역에서 굴절률이 높을 것이라고 예상되는 Zr과 Hf의 oxide를 위상 변위 마스크 물질의 선정하고 각 물질의 전자 상태와 천이 상태를 분석하여 위상변위 마스크로써의 이용가능성을 연구하자 한다. 상온에서 Zr, Hf oxide의 안정한 구조는 cubic 구조와 monoclinic 구조이다. 현재 cubic 구조의 Zr, Hf oxide에 대한 전자 상태는 연구가 많이 되어 있는 반면 monoclinic 구조에서의 전자상태 연구는 미흡하다. 본 연구에서는 monoclinic 구조를 이용하여 Zr, Hf oxide의 클러스터 모델을 제작하였다. 제작된 클러스터 모델에 대하여 DV-X$\alpha$ 계산법을 적용, 기저상태의 전자상태를 계산하였다. 그리고 각 모델에서 Zr L-edge, Hf L-edge 그리고 O K-edge의 천이상태를 연구하여, 기저 상태의 전자상태와 천이상태를 연구하여 광학 성질과의 연관성을 연구하고자 하였다.
센서 어레이로부터 감지된 신호 패턴을 분류함으로써 감지 대상체를 구별하기 위해 본 연구에서는 상태 천이 모델을 이용하는 방법을 제안하였다. 센서 어레이의 신호 데이터를 패턴 모양의 특성을 나타낼 수 있는 상태 천이 모델로 변환하여 감지 대상체의 구별이 보다 정확하게 이루어 질 수 있도록 모델을 설계하는데 초점을 두면서, 모델링 요소인 '상태'는 각도 $(-\frac{\pi}{2},\frac{\pi}{2})$을 n개의 일정한 크기의 구간으로 나누어 각 구간을 하나의 상태로 정의하고, '천이' 관계는 일정한 시간 간격으로 샘플링된 신호 데이터 간의 각도 변화로 각각 정의하여 각도변이 기반 상태천이 모델링을 고안하였으며 모델의 유효성을 실험을 통하여 검증하였다.
일반적으로 센서 어레이는 많은 채널의 센서를 가지고 있으므로 분석해야 할 데이터의 양이 많다. 따라서 다변량(多變量) 분석 방법을 이용하는데, 크게 통계적 방법과 신경망 방법을 분석하고자 하는 데이터의 특성이나 분석에 필요한 환경 조건에 맞는 분석 방법을 선택하여 이용한다. 센서 어레이의 신호 패턴을 분석하기 위해 본 연구에서는 상태 천이 모델을 이용하여 측정된 가스의 특성을 반영할 수 있는 통계적 방법에 대해 연구하였다. 센서 어레이 신호 데이터를 패턴 모양의 특성을 나타낼 수 있는 상태 천이 모델로 변환하여 가스 종류 식별이 보다 정확하게 이루어 질 수 있도록 모델을 설계하는데 중점을 두고, 모델링 요소인 '상태'는 일정한 시간 간격으로 샘플링 하였을 때의 신호값으로,'천이 관계는 각 천이 벡터의 각으로 각각 정의하여 각도변이 기반 상태천이 모델링을 고안하였다.
신경회로망을 동적 정보처리에 응용하기 위해서는 비대칭 결합 신경회로망에서 생성되는 동적 상태천이에 관한 직관적 이해가 필요하다. 자기결합을 갖고 결합하중치가 비대칭인 순환결합형 신경회로망은 복수 개의 리미트사이클이 기억 가능하다는 것이 알려져 있다. 현재까지 이산시간 모델의 네트워크에 대한 상태천이 해석은 상세하게 이루어져 왔다. 그러나 연속시간 모델에 대한 해석은 네트워크 규모의 증가에 따른 급격한 계산량의 증가 때문에 연구가 그다지 활발하게 이루어지지 않고 있다. 본 논문에서는 각 뉴런이 최근접 뉴런에만 이진화된 결합하중 +1 및 -1로 연결된 연속시간모델 순환결합형 신경회로망의 동적인 상태천이 특성을 해석하여 이산시간 모델에서 기억 가능한 리미트사이클과의 차이점을 분석한다. 또한 연속시간 네트워크 모델에 카오스 신호를 인가하여 리미트사이클간의 천이를 제어할 수 있는 가능성을 분석하여 동적정보처리에 네트워크를 응용할 수 있는 가능성을 검토한다.
본 논문에서는 이산 은닉 마코프 모델(Discrete Hidden Markov Model)을 이용한 연결 음성 인식에 관한 알고리듬 및 모델 토폴로지를 제안한다. 제안된 모델은 인식률과 인식할 수 있는 어휘를 고려하여 2 음소열 및 3 음소열 모델을 사용하며, 보다 정확한 음소 간의 세그멘테이션과 알고리듬의 수행 속도를 고려하여 2 음소열에서는 첫 번째 상태와 마지막 상태를 안정 상태, 나머지 상태는 천이 상태인 4 개의 상태를 갖도록 하고, 또한 3 음소열에서는 7 개의 상태를 갖도록 하며, 여기서 7개의 상태는 3 개의 안정 상태와 4개의 천이 상태를 갖도록 개선한다. 또한, 제안된 음성 인식 알고리듬은 인식 과정 내에서 음소의 발음 구간을 검출하도록 설계한다.
본 연구는 BLDC 모터의 동일모델간 다른 정상범위로 인해 발생하는 상태판단 문제를 해결해 진단 효율을 높이는데 있다. 모터내 고유한 외란은 동일한 상태임에도 정상상태 범위가 다르게 계측되는 원인이다. 이러한 문제는 진단모델 설계시 모터 상태를 구별하기 위한 특징변수와 상태판단 기준값을 결정하기 어렵게 한다. 실험은 다수의 BLDC 모터들에서 신호를 계측하기 위한 시스템을 구성하고, 모터별 다른 정상범위를 관찰하고 고장들을 상태별로 분류하였다. 계측한 신호는 제안한 상태천이모델을 사용하여 모터 고유외란의 영향을 최소화하였다. 제안한 상태천이모델은 동일 모터모델에서 발생하는 다른 정상상태 특성을 줄여 고장 검출효율을 향상시키는 방법이다. 본 연구의 실험 결과, 고장 검출율이 향상되었으며 제안한 상태천이모델이 진단에서 유용한 방법임을 알 수 있었다.
유한 상태 머신으로 표현되는 비동기 머신의 안정 상태 동작은 피드백 제어를 통해서 원하는 목적에 맞게 교정될 수 있다. 본 논문에서는 불확실한 상태 천이를 가지는 입력/상태 비동기 머신을 위한 상태 피드백 제어기를 제안한다. 비동기 머신은 결정적인 동작 특성을 가지고 있으나 모델 불확실성, 내부 고장 등으로 인해서 일부 영역의 상태 천이 함수가 불확실하다. 교정 제어의 목적은 불확실한 상태 천이를 고려하면서 머신의 폐루프 동작이 주어진 정상적인 모델 동작의 부분 집합이 되도록하는 일이다. 또 제어기는 실제 교정 동작을 수행하면서 획득하는 머신의 정확한 상태 천이를 그 다음 제어 동작에 반영한다. 즉 학습을 통해서 폐루프 시스템이 이룰 수 있는 모델의 부분 동작의 범위가 더 확대된다. 사례 연구를 제안된 제어기의 설계 과정을 예시한다.
본 논문은 디지털 순서회로 설계시 상태할당 알고리즘 개발에 관한 연구로, 동적 소비전력을 감소시키기 위하여 상태변수의 변화를 최소로 하는 코드를 할당하여 상태코드가 변화하는 스위칭횟수를 줄이도록 하였다. 상태를 할당하는데는 Markov의 확률함수를 이용하여 hamming거리가 최소가 되도록 상태 천이도에서 각 상태를 연결하는 edge에 weight를 정의한 다음, 가중치를 이용하여 각 상태들간의 연결성을 고려하여 인접한 상태들간에는 가능한 적은 비트 천이를 가지도륵 모든 상태를 반복적으로 찾아 계산하였다. 비트 천이의 정도를 나타내기 위하여 cost 함수로 계산한 결과 순서회로의 종류에 따라 Lakshmikant의 알고리즘보다 최고 57.42%를 감소시킬 수 있었다.
본 논문에서는 모델 불확정성을 가진 이산사건시스템의 강인 관리제어이론에 대해 알아본다. 지금까지 연구된 불확정성 이산사건시스템은 크게 두 부류로 구분된다. 첫째는 다중 모델의 집합으로 표현되는 불확정성 시스템으로서 제어 대상이 되는 시스템의 동적 특성이 몇 가지의 가능한 이산사건 모델들의 집합으로 기술되는 시스템이다. 두 번째는 비결정성 시스템으로서 시스템의 한 상태에서 하나의 동일 사건발생에 의해 천이되는 상태가 두가지 이상이 존재하여 상태천이에 있어 불확정성이 존재하는 시스템이다. 본 논문에서는 두가지 형태의 불확정성 이산사건 시스템들에 대한 강인 관리제어기 설계문제에 대해 살펴보고, 강인 관리 제어 이론에 대한 최근의 연구동향과 발전 방향에 대해 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.