시설물 상태평가는 시설물의 사용성을 평가하고, 진단 주기를 결정하는 중요한 과정이다. 현재 수행되고 있는 인력 기반 방법은 안전, 효율, 객관성에 대한 문제를 안고 있어 이를 개선하기 위해 영상을 이용한 딥러닝(deep learning) 기반의 연구가 수행되고 있다. 그러나 시설물 손상 데이터는 발견하기 어려워 다량의 시설물 손상 학습 데이터를 구축하기 어렵고, 이는 딥러닝 기반 상태평가에 한계로 작용한다. 본 연구에서는 영상 기반 시설물 상태평가의 학습 데이터 부족으로 인한 어려움을 개선하기 위해 파운데이션 모델(foundation model) 기반 2-step 시설물 손상 분석을 제시한다. 시설물 상태평가의 요소를 객체화와 정량화로 세분화하고, 정량화 단계에서 영상 분할(segmentation) 파운데이션 모델을 적용하였다. 본 연구의 방법은 기존 영상 분할 방법 대비 10% 포인트 이상 높은 mean intersection over union을 나타냈고, 특히 철근 노출의 경우에는 40% 포인트 이상의 성능 개선을 보였다. 본 연구의 방법이 학습 데이터 구축이 어려운 도메인에 성능 개선을 가져올 것이라 기대한다.
안드로이드(Android) 어플리케이션(앱)의 신뢰성과 사용성 검증을 위해, 앱의 기능 검사와 크래쉬(Crash) 탐지 등을 위한 다양한 GUI 테스팅(Graphical User Interface Testing) 기법이 널리 사용되고 있다. 그 중 모델 기반(Model-based) GUI 테스팅 기법은 GUI 모델을 이용해 테스트 케이스를 생성하기 때문에, 기법의 유효성(Effectiveness)은 기반 모델의 정확도에 의존적이다. 따라서 모델 기반 기법의 유효성 향상을 위해서는 테스트 대상 앱의 행위를 충분히 반영할 수 있는 모델 생성 기법이 필요하며, 이를 위해 본 연구에서는 GUI 상태를 정밀하게 구분하는 계층적 화면 비교 기법을 통해 테스팅의 유효성과 효율성을 향상시키고자 한다. 또한, 기존 연구 기법과의 비교 실험을 통해 제안 기법이 유효한 모델의 효율적 생성을 가능하게 함을 확인함으로써, 모델 기반 안드로이드 GUI 테스팅의 성능 향상 가능성을 제시한다.
결함 트리 분석(Fault Tree Analysis)은 결함 트리를 구축하여 시스템의 안전성 분석을 수행한다. 그러나 결함 트리를 구성하는 작업은 대상 시스템의 도메인에 대한 지식과 경험을 필요로 하며 많은 시간과 노력을 소요한다. 이 논문에서는 시스템 설계 산출물인 상태 전이 모델을 기반으로 결함 트리를 체계적으로 구성하는 방법을 제안한다. 이를 위해 시스템 상태 전이 모델의 안정성 확보에 필요한 조건들을 식별하고 결함 트리를 구성할 수 있는 템플리트를 개발한다. 이 논문에서는 제안된 방법을 철도 건널목 제어 시스템에 적용한 결과도 기술한다.
센서 어레이로부터 감지된 신호 패턴을 분류함으로써 감지 대상체를 구별하기 위해 본 연구에서는 상태 천이 모델을 이용하는 방법을 제안하였다. 센서 어레이의 신호 데이터를 패턴 모양의 특성을 나타낼 수 있는 상태 천이 모델로 변환하여 감지 대상체의 구별이 보다 정확하게 이루어 질 수 있도록 모델을 설계하는데 초점을 두면서, 모델링 요소인 '상태'는 각도 $(-\frac{\pi}{2},\frac{\pi}{2})$을 n개의 일정한 크기의 구간으로 나누어 각 구간을 하나의 상태로 정의하고, '천이' 관계는 일정한 시간 간격으로 샘플링된 신호 데이터 간의 각도 변화로 각각 정의하여 각도변이 기반 상태천이 모델링을 고안하였으며 모델의 유효성을 실험을 통하여 검증하였다.
주행 중에 발생하는 졸음은 큰 사고로 직결될 수 있는 매우 위험한 운전자 상태이다. 졸음을 방지하기 위하여 운전자의 상태를 파악하는 전통적인 졸음 감지 방법들이 존재하지만 운전자들이 가지는 개개인의 특성을 모두 반영한 일반화 된 운전자 상태 인식에는 한계가 있다. 최근에는 운전자의 상태를 인식하기 위한 딥 러닝기반의 상태인식 연구들이 제안되었다. 딥 러닝은 인간이 아닌 기계가 특징을 추출하여 보다 일반화된 인식모델을 도출할 수 있는 장점이 있다. 본 연구에서는 운전자의 상태를 파악하기 위해 이미지와 PPG를 동시에 학습하여 기존 딥 러닝 방식보다 정확한 상태 인식 모델을 제안한다. 본 논문은 운전자의 이미지와 PPG 데이터가 졸음 감지에 어떤 영향을 미치는지, 함께 사용되었을 때 학습 모델의 성능을 향상시키는지 실험을 통해 확인하였다. 이미지만을 사용했을 때 보다 이미지와 PPG를 함께 사용하였을 때 3%내외의 정확도 향상을 확인했다. 또한, 운전자의 상태를 세 가지로 분류하는 멀티모달 딥 러닝 기반의 모델을 96%의 분류 정확도를 보였다.
현재 디지털 시스템 설계가 필요한 모든 유한 상태머신을 설계에는 필수적 밀리 모델이나 무어 모델이 들어간다. 그러나 각각의 기기와 기능에 따라서 밀리 모델과 무어 모델 중 어느 모델이 디지털 논리회로 설계에 효율적인지 판단이 모호한 상황이다. 이를 위해 본 논문에서는 유한 상태머신의 하나인 벤딩머신을 대상으로 밀리 모델과 무어 모델을 사용하여 설계한 후, 설계의 복잡도와 구현 게이트 수를 구하여 각 모델의 효율성에 대해 비교 분석하고자 한다.
REST(Representational State Transfer)는 분산 컴퓨팅 플랫폼 모델이며, 세계에서 가장 큰 분산 응용인 Web에서 사용하고 있는 웹 구조 스타일 모델이다. 현재 웹의 기본 요소는 URI, HTTP, XML(HTML) 이며, REST는 이러한 인터넷 표준만을 사용한다. REST 에서 리소스의 식별은 URI로, 상태는 상태가 표현된 문서(리소스)로써 HTTP를 통해 전달된다. 리소스의 내용은 XML로 기술하며, 리소스 탐색 및 참조에는 HTTP의 표준 메서드인 GET, PUT, POST, DELETE 등만을 이용하는 것으로 분산 컴퓨팅을 모델링하고 있다. 따라서 서비스마다 다양한 메서드를 기억하여야 하는 SOAP 기반 웹 서비스에 비해 REST 모델의 분산 컴퓨팅 응용은 확장성 및 웹 친화성 측면에 있어서 매우 유리함을 알 수 있다.
본 논문에서는 가스 터빈 축 진동 신호 비정상 상태 분석의 사례 연구를 위해 커널 회귀 모델을 적용한다. 원격으로 전송되는 발전소 가스터빈의 진동데이터에 커널 회귀 모델을 적용하여 설비를 실시간으로 감시 및 분석 외에도, 축진동 신호의 비정상 상태를 분석하기 위하여 활용될 수 있다. 정상운전 중에 측정한 가스터빈의 정상적인 축진동 데이터 기반의 훈련데이터를 사용하여 생성한 자동연관커널회귀의 경험적 모델을 생성하고 적용할 수 있다. 이 데이터 기반 모델의 예측치를 실시간 데이터와 비교하여 신호의 상태를 분석하고 잔차를 감시하여 이상상태에 대한 분석 정보를 제공할 수 있다. 이상상태에서 발생하는 잔차는 비정상적으로 변화됨으로서 비정상 상태를 분석 할 수 있다. 본 논문에서 커널회귀모델은 축진동 센서의 신호 이상의 원인 분석 사례에서 고장을 구분할 수 있는 정보를 제공한다.
부두 내 컨테이너를 적재하는 과정에서 정렬 상태가 부정확한 경우 강풍으로 인한 안전사고가 발생할 가능성이 있다. 본 논문에서는 컨테이너 안전사고를 예방하기 위한 딥러닝 기반의 컨테이너 정렬 상태 분류 알고리즘을 제안한다. 제안하는 알고리즘은 정렬을 분류하는 기준을 제시하고 YOLO 기반의 모델을 구현했다. 추론 속도, 검출 정확도, 분류 정확도를 기준으로 각 모델의 성능을 평가했으며 성능 결과는 YOLOv4모델이 YOLOv3모델에 비해서 추론 속도는 느리지만, 검출 정확도와 분류 정확도는 높음을 보인다.
같은 상황이라도 사람에 따라 느끼는 감정은 다르다. 따라서 감정을 일반화하여 현재의 감정 상태를 정량적으로 표현하는데 는 한계가 있다. 본 논문은 현재의 감정 상태를 나타내기 위해, 인간의 감정을 모델링한 심리학의 감정 모델을 공학적으로 접근하여 심리학기반 공학적 인공감정을 제안한다. 제안된 인공감정은 심리학을 기반으로 감정발생의 인과관계, 성격에 따른 감정의 차이, 시간에 따른 감정의 차이, 연속된 감정자극에 따른 감정의 차이, 감정간의 상호관계에 따른 감정의 차이를 반영하여 구성했다. 현재의 감정 상태를 위치로 나타내기 위해서 감정장을 제안했고, 감정장 상의 위치와 위치에 따른 색깔로 현재의 감정 상태를 표현했다. 감정상태의 변화를 제안된 인공감정을 통해 시각화해보기 위해 셰익스피어의 '햄릿'에서 극중 등장인물인 햄릿의 감정변화를 제안된 인공감정을 통해 시각화 해 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.