• 제목/요약/키워드: 상태기반모델

검색결과 1,395건 처리시간 0.033초

시설물 상태평가를 위한 파운데이션 모델 기반 2-Step 시설물 손상 분석 (2-Step Structural Damage Analysis Based on Foundation Model for Structural Condition Assessment)

  • 박현수;김휘영;정동기
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.621-635
    • /
    • 2023
  • 시설물 상태평가는 시설물의 사용성을 평가하고, 진단 주기를 결정하는 중요한 과정이다. 현재 수행되고 있는 인력 기반 방법은 안전, 효율, 객관성에 대한 문제를 안고 있어 이를 개선하기 위해 영상을 이용한 딥러닝(deep learning) 기반의 연구가 수행되고 있다. 그러나 시설물 손상 데이터는 발견하기 어려워 다량의 시설물 손상 학습 데이터를 구축하기 어렵고, 이는 딥러닝 기반 상태평가에 한계로 작용한다. 본 연구에서는 영상 기반 시설물 상태평가의 학습 데이터 부족으로 인한 어려움을 개선하기 위해 파운데이션 모델(foundation model) 기반 2-step 시설물 손상 분석을 제시한다. 시설물 상태평가의 요소를 객체화와 정량화로 세분화하고, 정량화 단계에서 영상 분할(segmentation) 파운데이션 모델을 적용하였다. 본 연구의 방법은 기존 영상 분할 방법 대비 10% 포인트 이상 높은 mean intersection over union을 나타냈고, 특히 철근 노출의 경우에는 40% 포인트 이상의 성능 개선을 보였다. 본 연구의 방법이 학습 데이터 구축이 어려운 도메인에 성능 개선을 가져올 것이라 기대한다.

효과적인 모델 기반 안드로이드 GUI 테스팅을 위한 GUI 상태 비교 기법 (A GUI State Comparison Technique for Effective Model-based Android GUI Testing)

  • 백영민;홍광의;배두환
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1386-1396
    • /
    • 2015
  • 안드로이드(Android) 어플리케이션(앱)의 신뢰성과 사용성 검증을 위해, 앱의 기능 검사와 크래쉬(Crash) 탐지 등을 위한 다양한 GUI 테스팅(Graphical User Interface Testing) 기법이 널리 사용되고 있다. 그 중 모델 기반(Model-based) GUI 테스팅 기법은 GUI 모델을 이용해 테스트 케이스를 생성하기 때문에, 기법의 유효성(Effectiveness)은 기반 모델의 정확도에 의존적이다. 따라서 모델 기반 기법의 유효성 향상을 위해서는 테스트 대상 앱의 행위를 충분히 반영할 수 있는 모델 생성 기법이 필요하며, 이를 위해 본 연구에서는 GUI 상태를 정밀하게 구분하는 계층적 화면 비교 기법을 통해 테스팅의 유효성과 효율성을 향상시키고자 한다. 또한, 기존 연구 기법과의 비교 실험을 통해 제안 기법이 유효한 모델의 효율적 생성을 가능하게 함을 확인함으로써, 모델 기반 안드로이드 GUI 테스팅의 성능 향상 가능성을 제시한다.

상태 전이 모델 기반 결함 트리 분석 (Fault Tree Analysis based on State-Transition Model)

  • 정인상
    • 한국콘텐츠학회논문지
    • /
    • 제11권10호
    • /
    • pp.49-58
    • /
    • 2011
  • 결함 트리 분석(Fault Tree Analysis)은 결함 트리를 구축하여 시스템의 안전성 분석을 수행한다. 그러나 결함 트리를 구성하는 작업은 대상 시스템의 도메인에 대한 지식과 경험을 필요로 하며 많은 시간과 노력을 소요한다. 이 논문에서는 시스템 설계 산출물인 상태 전이 모델을 기반으로 결함 트리를 체계적으로 구성하는 방법을 제안한다. 이를 위해 시스템 상태 전이 모델의 안정성 확보에 필요한 조건들을 식별하고 결함 트리를 구성할 수 있는 템플리트를 개발한다. 이 논문에서는 제안된 방법을 철도 건널목 제어 시스템에 적용한 결과도 기술한다.

센서 어레이의 신호패턴 분류를 위한 각도 변이 기반 상태 천이 모델링 기법 (Angle Difference Based State Transition Modeling Technique for the Classification of Signal Pattern from the Sensor Array)

  • 김아람;이승재;김상경;박수현;김창화
    • 한국시뮬레이션학회논문지
    • /
    • 제15권3호
    • /
    • pp.49-60
    • /
    • 2006
  • 센서 어레이로부터 감지된 신호 패턴을 분류함으로써 감지 대상체를 구별하기 위해 본 연구에서는 상태 천이 모델을 이용하는 방법을 제안하였다. 센서 어레이의 신호 데이터를 패턴 모양의 특성을 나타낼 수 있는 상태 천이 모델로 변환하여 감지 대상체의 구별이 보다 정확하게 이루어 질 수 있도록 모델을 설계하는데 초점을 두면서, 모델링 요소인 '상태'는 각도 $(-\frac{\pi}{2},\frac{\pi}{2})$을 n개의 일정한 크기의 구간으로 나누어 각 구간을 하나의 상태로 정의하고, '천이' 관계는 일정한 시간 간격으로 샘플링된 신호 데이터 간의 각도 변화로 각각 정의하여 각도변이 기반 상태천이 모델링을 고안하였으며 모델의 유효성을 실험을 통하여 검증하였다.

  • PDF

이미지와 PPG 데이터를 사용한 멀티모달 딥 러닝 기반의 운전자 졸음 감지 모델 (Driver Drowsiness Detection Model using Image and PPG data Based on Multimodal Deep Learning)

  • 최형탁;백문기;강재식;윤승원;이규철
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.45-57
    • /
    • 2018
  • 주행 중에 발생하는 졸음은 큰 사고로 직결될 수 있는 매우 위험한 운전자 상태이다. 졸음을 방지하기 위하여 운전자의 상태를 파악하는 전통적인 졸음 감지 방법들이 존재하지만 운전자들이 가지는 개개인의 특성을 모두 반영한 일반화 된 운전자 상태 인식에는 한계가 있다. 최근에는 운전자의 상태를 인식하기 위한 딥 러닝기반의 상태인식 연구들이 제안되었다. 딥 러닝은 인간이 아닌 기계가 특징을 추출하여 보다 일반화된 인식모델을 도출할 수 있는 장점이 있다. 본 연구에서는 운전자의 상태를 파악하기 위해 이미지와 PPG를 동시에 학습하여 기존 딥 러닝 방식보다 정확한 상태 인식 모델을 제안한다. 본 논문은 운전자의 이미지와 PPG 데이터가 졸음 감지에 어떤 영향을 미치는지, 함께 사용되었을 때 학습 모델의 성능을 향상시키는지 실험을 통해 확인하였다. 이미지만을 사용했을 때 보다 이미지와 PPG를 함께 사용하였을 때 3%내외의 정확도 향상을 확인했다. 또한, 운전자의 상태를 세 가지로 분류하는 멀티모달 딥 러닝 기반의 모델을 96%의 분류 정확도를 보였다.

밀리, 무어 모델을 기반으로한 유한 상태머신 설계의 특성 비교 (A Comparison of Finite State Machine Design Based on Mealy and Moore Model)

  • 김승완;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제49차 동계학술대회논문집 22권1호
    • /
    • pp.271-272
    • /
    • 2014
  • 현재 디지털 시스템 설계가 필요한 모든 유한 상태머신을 설계에는 필수적 밀리 모델이나 무어 모델이 들어간다. 그러나 각각의 기기와 기능에 따라서 밀리 모델과 무어 모델 중 어느 모델이 디지털 논리회로 설계에 효율적인지 판단이 모호한 상황이다. 이를 위해 본 논문에서는 유한 상태머신의 하나인 벤딩머신을 대상으로 밀리 모델과 무어 모델을 사용하여 설계한 후, 설계의 복잡도와 구현 게이트 수를 구하여 각 모델의 효율성에 대해 비교 분석하고자 한다.

  • PDF

SOAP와 REST 기반 웹 서비스 (SOAP and REST-Based Wdb Services)

  • 황의철
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2004년도 춘계학술발표대회논문집
    • /
    • pp.413-416
    • /
    • 2004
  • REST(Representational State Transfer)는 분산 컴퓨팅 플랫폼 모델이며, 세계에서 가장 큰 분산 응용인 Web에서 사용하고 있는 웹 구조 스타일 모델이다. 현재 웹의 기본 요소는 URI, HTTP, XML(HTML) 이며, REST는 이러한 인터넷 표준만을 사용한다. REST 에서 리소스의 식별은 URI로, 상태는 상태가 표현된 문서(리소스)로써 HTTP를 통해 전달된다. 리소스의 내용은 XML로 기술하며, 리소스 탐색 및 참조에는 HTTP의 표준 메서드인 GET, PUT, POST, DELETE 등만을 이용하는 것으로 분산 컴퓨팅을 모델링하고 있다. 따라서 서비스마다 다양한 메서드를 기억하여야 하는 SOAP 기반 웹 서비스에 비해 REST 모델의 분산 컴퓨팅 응용은 확장성 및 웹 친화성 측면에 있어서 매우 유리함을 알 수 있다.

  • PDF

커널회귀 모델기반 가스터빈 축진동 신호이상 분석 (Kernel Regression Model based Gas Turbine Rotor Vibration Signal Abnormal State Analysis)

  • 김연환;김동환;박선휘
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.101-105
    • /
    • 2018
  • 본 논문에서는 가스 터빈 축 진동 신호 비정상 상태 분석의 사례 연구를 위해 커널 회귀 모델을 적용한다. 원격으로 전송되는 발전소 가스터빈의 진동데이터에 커널 회귀 모델을 적용하여 설비를 실시간으로 감시 및 분석 외에도, 축진동 신호의 비정상 상태를 분석하기 위하여 활용될 수 있다. 정상운전 중에 측정한 가스터빈의 정상적인 축진동 데이터 기반의 훈련데이터를 사용하여 생성한 자동연관커널회귀의 경험적 모델을 생성하고 적용할 수 있다. 이 데이터 기반 모델의 예측치를 실시간 데이터와 비교하여 신호의 상태를 분석하고 잔차를 감시하여 이상상태에 대한 분석 정보를 제공할 수 있다. 이상상태에서 발생하는 잔차는 비정상적으로 변화됨으로서 비정상 상태를 분석 할 수 있다. 본 논문에서 커널회귀모델은 축진동 센서의 신호 이상의 원인 분석 사례에서 고장을 구분할 수 있는 정보를 제공한다.

컨테이너 적재 상태 모니터링을 위한 딥러닝 모델 연구 (A Study on Deep Learning Model for Container Load Status Monitoring)

  • 오세영;정준호;최부림;연정흠;서용욱;김상우;윤주상
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.320-321
    • /
    • 2022
  • 부두 내 컨테이너를 적재하는 과정에서 정렬 상태가 부정확한 경우 강풍으로 인한 안전사고가 발생할 가능성이 있다. 본 논문에서는 컨테이너 안전사고를 예방하기 위한 딥러닝 기반의 컨테이너 정렬 상태 분류 알고리즘을 제안한다. 제안하는 알고리즘은 정렬을 분류하는 기준을 제시하고 YOLO 기반의 모델을 구현했다. 추론 속도, 검출 정확도, 분류 정확도를 기준으로 각 모델의 성능을 평가했으며 성능 결과는 YOLOv4모델이 YOLOv3모델에 비해서 추론 속도는 느리지만, 검출 정확도와 분류 정확도는 높음을 보인다.

심리학 기반 감정 모델의 공학적 접근에 의한 인공감정의 제안과 적용 (Developing and Adopting an Artificial Emotion by Technological Approaching Based on Psychological Emotion Model)

  • 함준석;여지혜;고일주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.331-336
    • /
    • 2008
  • 같은 상황이라도 사람에 따라 느끼는 감정은 다르다. 따라서 감정을 일반화하여 현재의 감정 상태를 정량적으로 표현하는데 는 한계가 있다. 본 논문은 현재의 감정 상태를 나타내기 위해, 인간의 감정을 모델링한 심리학의 감정 모델을 공학적으로 접근하여 심리학기반 공학적 인공감정을 제안한다. 제안된 인공감정은 심리학을 기반으로 감정발생의 인과관계, 성격에 따른 감정의 차이, 시간에 따른 감정의 차이, 연속된 감정자극에 따른 감정의 차이, 감정간의 상호관계에 따른 감정의 차이를 반영하여 구성했다. 현재의 감정 상태를 위치로 나타내기 위해서 감정장을 제안했고, 감정장 상의 위치와 위치에 따른 색깔로 현재의 감정 상태를 표현했다. 감정상태의 변화를 제안된 인공감정을 통해 시각화해보기 위해 셰익스피어의 '햄릿'에서 극중 등장인물인 햄릿의 감정변화를 제안된 인공감정을 통해 시각화 해 보였다.

  • PDF