• Title/Summary/Keyword: 상층대기

Search Result 98, Processing Time 0.024 seconds

Development of Adsorbent for Radioactive Carbon Dioxide (고효율 방사성이산화탄소 흡착제 개발)

  • 지준화;강덕원;이재의;한재욱
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.158-161
    • /
    • 2003
  • To develop an effective adsorbent for radio active Carbon Dioxide, $^14CO_2$, which is discharged to nearby atmosphere from nuclear power plants of CANDU type, we made some preliminary adsorbents and tested their abilities of $CO_2$ removal. The chemical agents used was LiOH and we supported or impregnated it on the surface or the internal volume of activated Carbon(GW-H). The physical and chemical properties of various adsorbents were measured using methods such as XRD, BET. SEM images were taken to investigate the change of surface morphology of the adsorbents. Finally, amount of $CO_2$ adsorption of them were verified under specific conditions. We found that mechanical mixing of LiOH and activated Carbon showed the maximum $CO_2$ removal ability, while surface activation of activated Carbon by Nitric Acid-treatment enhanced its $CO_2$ removal efficiency to some degree.

  • PDF

A Mechanism Analysis of Landspout Generation Occurred over Ilsan on June 10 2014 using a Numerical Model (수치모델을 활용한 2014년 6월 10일 일산 용오름 발생 메커니즘 분석)

  • In, So-Ra;Jung, Sueng-Pil;Shim, JaeKwan;Choi, Byoung-Choel
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • The purpose of this study is to investigate the formation mechanism of landspout by using the Cloud Resolving Storm Simulator (CReSS). The landspout occurred over Ilsan, Goyang City, the Republic of Korea on June 10, 2014 with the damage of a private property. In synoptic environment, a cold dry air on the upper layers of the atmosphere, and there was an advection with warm and humid air in the lower atmosphere. Temperature differences between upper and lower layers resulted in thermal instability. The storm began to arise at 1920 KST and reached the mature stage in ten minutes. The cloud top height was estimated at 9 km and the hook echo was appeared at the rear of a storm in simulation result. Model results showed that the downburst was generated in the developed storm over the Ilsan area. This downburst caused the horizontal flow when it diverged near the surface. The horizontal flow was switched to updraft at the rear of storm, and the rear-flank downdrafts (RFDs) current occurred from simulation result. The RFDs took down the vertical flow to the surface. After then, the vertical vorticity could be generated on the surface in simulation result. Subsequently, the vertical vorticity was stretched to form a landspout. The cyclonic vorticity of echo hook from simulation was greater than $3{\times}10^{-2}s^{-1}$(height of 360 m) and landspout diameter was estimated at 1 km.

Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors (위성센서 대리 검보정을 위한 소노란 사막의 복사 가변성 연구)

  • Kim, Wonkook;Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.209-218
    • /
    • 2013
  • The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.

Analysis of Cloud Properties Related to Yeongdong Heavy Snow Using the MODIS Cloud Product (MODIS 구름 산출물을 이용한 영동대설 관련 구름 특성의 분석)

  • Ahn, Bo-Young;Cho, Kuh-Hee;Lee, Jeong-Soon;Lee, Kyu-Tae;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.71-87
    • /
    • 2007
  • In this study, 14 heavy snow events in Yeongdong area which are local phenomena are analyzed using MODIS cloud products provided from NASA/GSFC. The clouds of Yeongdong area at observed at specific time by MODIS are classified into A, B, C Types, based on the characteristic of cloud properties: cloud top temperature, cloud optical thickness, Effective Particle Radius, and Cloud Particle Phase. The analysis of relations between cloud properties and precipitation amount for each cloud type show that there are statistically significant correlations between Cloud Optical Thickness and precipitation amount for both A and B type and also significant correlation is found between Cloud Top Temperature and precipitation amount for A type. However, for C type there is not any significant correlations between cloud properties and precipitation amount. A-type clouds are mainly lower stratus clouds with small-size droplet, which may be formed under the low level cold advection derived synoptically in the East sea. B-type clouds are developed cumuliform clouds, which are closely related to the low pressure center developing over the East sea. On the other hand, C-type clouds are likely multi-layer clouds, which make satellite observation difficult due to covering of high clouds over low level clouds directly related with Yeongdong heavy snow. It is, therefore, concluded that MODIS cloud products may be useful except the multi-layer clouds for understanding the mechanism of heavy snow and estimating the precipitation amount from satellite data in the case of Yeongdong heavy snow.

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.

Analysis of Snowfall Development Mechanism over the Korean Peninsula due to Polar Low (극저기압에 의한 한반도 강설 발달기구 분석)

  • Kim, Jinyeon;Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.645-661
    • /
    • 2013
  • The synoptic, thermodynamic, and dynamic characteristics of a heavy snowfall event that occurred in Seoul metropolitan area on 27 to 28 December 2010 was investigated. During this period there was a distinctive case that was identified as a polar low. We analyzed surface and upper level weather charts, snowfall amount, sea surface temperature, satellite imagery, sounding, and the National Center for Environmental Prediction global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The polar low developed in an area where there was strong baroclinicity in the lower level aided by strong conditional instability due to 925 hPa warm air advection and 700 hPa cold air advection. The development mechanism of polar low is due, in part, to the tropopause folding, which advected stratospheric air increasing potential vorticity in mid-level and inducing cyclonic vorticity and convergence in low-level. Eventually clouds developed and there were snowfall total of 10 cm in Seoul metropolitan area and as much as 20 cm in southern parts of Korea. During the snowfall development, there was a $-45^{\circ}C$ cold core at 500 hPa and shortwave maintained $3-5^{\circ}$ separation with surface trough, which favored the development of polar low located in the warm sector and cyclonic advection area. The height of the dynamical tropopause lowered to 700 hPa during the peak development and increase in potential vorticity allowed strong vertical motion to occur. Overall, there was a close relationship between the development of snowfall and tropopause undulation. The heaviest snowfall occurred east of the tropopause folding where strong cyclonic vorticity, vertical motion, and moisture advection all coincided while the polar low was passing through the Korean peninsula.

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

Effects of Air Pollution on the Forest Vegetation Structure in the Vicinity of Sasang Industrial Complex in Korea (사상공단(沙上工團)의 대기오염(大氣汚染)이 주변(周邊) 산림(山林)의 식생구조(植生構造)에 미치는 영향(影響))

  • Kim, Jeom Soo;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • The object of this study was to examine the effects of air pollution on forest vegetation structure in the vinicity of Sasang industrial complex in Korea. Forest vegetation structure was investigated at 19 sample plots surrounding industrial complex and at one site away from industrial complex as a control. The results obtained were as follows; 1. For analysis of vegetation structure, upperstory of forests was mostly consisted of Pinus thunbergii, and partly of Alnus firma and Robinia pseudoacacia. In midstory, major components were Pinus thunbergii, Robinia pseudoacacia, Rhus trichocarpa, Rhus chinensis and Styrax japonica, In lower story, Pinus thunbergii was a minor component, while Robinia pseudoacacia, Quercus serrata, Rhus trichocarpa. and Rhododendron yedoense var. poukhanense which were known to be resistant to air pollution were found in large number. Especially, importance percentage of Robinia pseudoacacia was high, while that of Rhododendron mucronulatum was low in surrounding industrial complex. 2. For woody plants, number of species, species diversity and similarity index in industrial complex, were not significantly different from those in control plot. 3. For herbs, Oplismenus undulatifolius appeared in large number in most plots. The $SDR_3$ of Miscanthus sinensis, Calamagrostis arundinacea, Paederia scandens, Spodiopogon cotulifer and Carex humilis were high, but that of Aster scaber, Saussurea seoulensis, Solidago virgaaurea var. asiatica and Prunella vulgaris var. lilacina were low in the vicinity of industrial complex. 4. Number of herb species decreased to below 10 species at surrounding industrial complex as compared to 20 species in the control plot. In addition species diversity, and similarity index in the industrial complex were lower than those in control plot. It may be concluded that Pinus thunbergii forests in industrial complex consists of tree species resistant to air pollution, and that composition of woody vegetation in industrial complex was not much different from control plot, while composition of herbs was already quite different between the two plots. Forest vegetation structure, therefore, may change with time due to air pollution in the industrial complex.

  • PDF

Cross-Calibration of GOCI-II in Near-Infrared Band with GOCI (GOCI를 이용한 GOCI-II 근적외 밴드 교차보정)

  • Eunkyung Lee;Sujung Bae;Jae-Hyun Ahn;Kyeong-Sang Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1553-1563
    • /
    • 2023
  • The Geostationary Ocean Color Imager-II (GOCI-II) is a satellite designed for ocean color observation, covering the Northeast Asian region and the entire disk of the Earth. It commenced operations in 2020, succeeding its predecessor, GOCI, which had been active for the previous decade. In this study, we aimed to enhance the atmospheric correction algorithm, a critical step in producing satellite-based ocean color data, by performing cross-calibration on the GOCI-II near-infrared (NIR) band using the GOCI NIR band. To achieve this, we conducted a cross-calibration study on the top-of-atmosphere (TOA) radiance of the NIR band and derived a vicarious calibration gain for two NIR bands (745 and 865 nm). As a result of applying this gain, the offset of two sensors decreased and the ratio approached 1. It shows that consistency of two sensors was improved. Also, the Rayleigh-corrected reflectance at 745 nm and 865 nm increased by 5.62% and 9.52%, respectively. This alteration had implications for the ratio of Rayleigh-corrected reflectance at these wavelengths, potentially impacting the atmospheric correction results across all spectral bands, particularly during the aerosol reflectance correction process within the atmospheric correction algorithm. Due to the limited overlapping operational period of GOCI and GOCI-II satellites, we only used data from March 2021. Nevertheless, we anticipate further enhancements through ongoing cross-calibration research with other satellites in the future. Additionally, it is essential to apply the vicarious calibration gain derived for the NIR band in this study to perform vicarious calibration for the visible channels and assess its impact on the accuracy of the ocean color products.