• Title/Summary/Keyword: 상측두회

Search Result 15, Processing Time 0.044 seconds

Neural Correlates of Faux Pas Detection: An fMRI Study (헛디딤 탐지의 신경 상관: 기능적 자기공명 영상 연구)

  • Park, Min;Lee, Seung-Bok;Yoon, Hyo-Woon;Ghim, Hei-Rhee
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.77-93
    • /
    • 2010
  • The aim of this study was to identify neural correlates underlying the detection of faux pas, a test of theory of mind (ToM), in Korean healthy adults. Using functional magnetic resonance imaging, we compared the brain activities associated with faux pas stories and the activities associated with control stories. Faux pas stories compared with the control stories produced activations bilaterally in the superior frontal gyrus (BA 9) and in the precuneus (BA 7). The left medial frontal gyrus (BA 9), the left superior temporal gyrus (BA 38), the left inferior temporal gyrus (BA 20) and the right inferior parietal lobule (BA 40), the right postcentral gyrus (BA 1), the right lingual gyrus (BA 18), the right transverse temporal gyrus (BA 41) were also activated. The orbitofrontal cortex and the amygdala were not found to be involved in the detection of faux pas. This result suggests that brain activations associated with ToM are dependent on the type of mental state drawn by the task.

  • PDF

Brain Activation Associated with Set Size During Random Number Generation (무선열 생성과제에서 반응후보 수에 따른 뇌활성화 양상)

  • Lee, Byeong-Taek;Kim, Cheong-Tag
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.1
    • /
    • pp.57-74
    • /
    • 2008
  • This study aimed to investigate the preferential brain activations involed in the set size during random number generation (RNG). The BNG condition gave more increased activations in the anterior cingulate cortex (ACC), inferior frontal gyrus (IFG), inferior parietal lobule (IPL), and superior temporal gyrus (STG) than the simple counting condition, which was a control rendition. When the activations were compared by the small set size condition versus the large set size condition, broad areas covering tempore-occipital network, ACC, and postcentral gyrus were more highly activated in the small set size condition than in the large set size condition, while responses of areas including medial frontal gyrus, superior parietal lobule, and lingual gyrus were more increased in the large set size condition than in the small set size condition. The capacity hypothesis of working memory fails to explain the results. On the contrary, strategy selection hypothesis seems to explain the current observations properly.

  • PDF

Brain Activation during Intentionality Detection: An fMRI Study (지향성 탐지 과정의 뇌 활성화: 기능적 자기공명 영상 연구)

  • Lee, Seung-Bok;Park, Min;Yoon, Hyo-Woon;Ghim, Hei-Rhee
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • We applied fMRI to examine brain activation at intentionality detection (ID) task. The main purpose of this study was to explore whether brain activation regions involved in intentionality detection (known as the basic mechanism of theory of mind) differ or not, according to prior instruction. Left uncus, superior temporal gyrus and right inferior occipital gyrus, supramarginal gyrus, inferior parietal lobule, thalamus (medial dorsal nucleus), and precuneus were activated with prior instruction. In contrast, ID task with no instruction activated merely inferior parietal lobule and superior parietal lobule. Common activated area between the two instruction conditions was inferiordparietal lobule. Our results suggest thar prior instruction activated ID-related brain regions more explicitly. furtherdinvestigations would be loused on spontaneity of intentionality detector and characteristic of participants.

  • PDF

Alterations of Cerebral Blood Flow and Cerebrovascular Reserve in Patients with Chronic Traumatic Brain Injury Accompanying Deteriorated Intelligence (지능 저하를 동반한 두부외상 환자에서 뇌혈류 및 혈류예비능의 변화)

  • Song, Ho-Chun;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.183-198
    • /
    • 2000
  • Purpose: The purpose of this study was to evaluate alterations of regional cerebral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunction in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Materials and Methods: Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolamide brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM'97) Results: CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Conclusion: Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.

  • PDF

Neural Bases of Empathy in Competitive vs. non-Competitive situation (경쟁과 비경쟁 상황에서 공감의 신경학적 기제)

  • Hwang, Su-Young;Yoon, Mi-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.441-467
    • /
    • 2016
  • This fMRI study is aim to investigate effects of competitive environment in cognitive empathic process in human brain. Empathy is known as a crucial factor for human's adaptive behavior in aspects of social cognition and it is almost automatic process, on the other hand competitive situation is psychologically devastated environment to win someone for getting rewards. We hypnotized that reading and understanding of other person's mind are a specific characteristic related to survival evolutionarily, however competition would have an effect on the empathic cognitive process because of mechanisms of competition. To manipulate the competitive atmosphere, one researcher took a role of competitor against participants and they were instructed to get monetary rewards when their performance was better than a competitor. 21 participants(9 males and 12 females) performed to judge the emotional valence of the empathic task consisted of illustrated images with various situation could be experienced in real world as on $1^{st}$ person perspective in both competitive and non-competitive condition, and did same performance with objects stimulus in control condition. In order to examine the competition effects on empathic process,, hemodynamic response were obtained during fMRI session and the imaging data were analyzed to identify brain regions where responses to each condition across the two consecutive runs. Participants' reaction time in competitive condition was faster statistically significant than non-competitive one. Activation for competitive condition increased in the following areas: ACC, mPFC, SMG, thalamus extended caudate and Nacc, parahippocampal gyrus, and for non-competitive condition increased paracingulate gyrus, temporal pole, vmPFC, superior occipital gyrus. As a result of regression analysis using empathic scores as covariance, the rSMG, IFG, fusiform gyrus, thalamus, putamen were correlated with higher empathic levels, and TPJ were correlated with lower empathic scores. We suggest that these observations could mean competitive environment have an effect on neural base of cognitive empathic process.

Metabolic Correlates of Temperament Factors of Personality (기질적 성격요인과 국소 뇌포도당대사의 상관연구: 성별에 따른 차이)

  • Park, Hyun-Soo;Cho, Sang-Soo;Yoon, Eun-Jin;Bang, Seong-Ae;Kim, Yu-Kyeong;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.280-290
    • /
    • 2007
  • Purpose: Gender differences in personality are considered to have biological bases. In an attempt to understand the gender differences of personality on neurobiological bases, we conducted correlation analyses between regional brain glucose metabolism and temperament factors of personality in males and females. Materials and Methods: Thirty-six healthy right-handed volunteers (18 males, 33.8$\pm$17.6 y; 18 females, 36.2$\pm$20.4 y) underwent FDG PET at resting state. Three temperament factors of personality (novelty seeking (NS), harm avoidance (HA), reward dependence (RD)) were assessed using Cloninger's 240-item Temperament and Character Inventory (TCD within 10 days of FOG PET scan. Correlation between regional glucose metabolism and each temperament factor was tested using SPM2. Results: In males, a significant negative correlation between NS score and glucose metabolism was observed in the bilateral superior temporal gyri, the hippocampus and the insula, while it was found in the bilateral middle frontal gyri, the right superior temporal gyrus and the left cingulate cortex and the putamen in females. A positive HA correlation was found in the right midbrain and the left cingulate gyrus in males, but in the bilateral basal ganglia in females. A negative RD correlation was observed in the right middle frontal and the left middle temporal gyri in males, while the correlation was found in the bilateral middle frontal gyri and the right basal ganglia and the superior temporal gyrus in females. Conclusion: These data demonstrate different cortical and subcortical metabolic correlates of temperament factors of personality between males and females. These results may help understand biological substrate of gender differences in personality and susceptibility to neuropsychiatric illnesses.

Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder (주 우울증 환자의 국소 뇌혈류 변화 연구)

  • Lee, Won-Hyoung;Chung, Yong-An;Seo, Ye-Young;Yoo, Ik-Dong;Na, Sae-Jung;Jung, Hyun-Suk;Kim, Ki-Jun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.107-111
    • /
    • 2009
  • Purpose: The authors analyzed how the regional cerebral blood flow(rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Materials and Methods: Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4weeks(male: 7, female: 5, age range: $19{\sim}52$ years, average age: $29.3{\pm}9.9$ years) and 14 normal volunteers(male: 8, female: 6, age range: $19{\sim}53$ years, average age: $31.4{\pm}9.2$ years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. Results: The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. Conclusion: The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated.

Analysis of source localization of P300 in college students with schizotypal traits (조현형 인격 성향을 가진 대학생의 P300 국소화 분석)

  • Jang, Kyoung-Mi;Kim, Bo-Mi;Na, Eun-Chan;An, Eun-Ji;Kim, Myung-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.1
    • /
    • pp.1-26
    • /
    • 2017
  • This study investigated the cortical generators of P300 in college students with schizotypal traits by using an auditory oddball paradigm, event-related potentials (ERPs) and standardized low resolution brain electromagnetic tomography (sLORETA) model. We also investigated the relationship between the current density of P300 and the clinical symptoms of schizophrenia. Based on the scores of Schizotypal Personality Questionnaire(SPQ), schizotypal trait (n=37) and control (n=42) groups were selected. For the measurement of P300, an auditory oddball paradigm, in which frequent standard tones (1000Hz) and rare target tones (1500Hz) were presented randomly, was used. Participants were required to count the number of the target tones during the task and report this at the end of the experiment. The two groups did not differ significantly in the accuracy of the oddball task. The schizotypal trait group showed significantly smaller P300 amplitudes than control group. In terms of source localization, both groups showed the P300 current density over bilateral frontal, parietal, temporal and occipital lobes. However, the schizotypal trait group showed significantly reduced activations in the left superior temporal gyrus and the right middle temporal gyrus, but increased activations in both left inferior frontal gyrus and right superior frontal gyrus compared to the control group. Furthermore, a negative correlation between the current density of the right superior frontal gyrus and SPQ disorganization score was found in the schizotypal trait group. These findings indicate that the individuals with schizotypal traits have dysfunctions of frontal and temporal areas, which are known to be the source of P300, as observed in patients with schizophrenia. In addition, the present results indicate that the disorganization score, rather than total score, of the SPQ is useful in predicting the risk of future schizophrenia.

Neural Basis Involved in the Interference Effects During Dual Task: Interaction Between Calculation and Memory Retrieval (이중과제 수행시의 간섭효과에 수반되는 신경기반: 산술연산과 기억인출간의 상호작용)

  • Lee, Byeong-Taek;Lee, Kyoung-Min
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.2
    • /
    • pp.159-178
    • /
    • 2007
  • Lee & Kang (2002) showed that simultaneous phonological rehearsal significantly delayed the performance of multiplication but not subtraction, whereas holding an image in the memory delayed subtraction but not multiplication. This result indicated that arithmetic function is related to working memory in a subsystem-specific manner. The aim of the current study was to examine the neural correlates of previous finding using fMRI. For this goal, dual task conditions that required suppression or no suppression were manipulated. In general, several areas were more activated in the interference conditions than in the less interference conditions, although both conditions were dual condition. More important finding is that the specific areas activated in the phonological suppression rendition were right inferior frontal gyrus, left angular, and inferior parietal lobule, while the areas activated in the other condition were mainly in the right superior temporal gyrus and anterior cingulate gyrus. Furthermore, the areas activated in the phonological or visual less suppression condition were right medial frontal gyrus, left middle frontal gyrus, and bilateral medial frontal gyri, anterior cingulate cortices, and parahippocampal gyri, respectively. These results revealed that sharing the processing code invokes interference, and its neural basis.

  • PDF

Individual Differences in Intentionality Detection: Brain Activation Areas According to College Major (지향성 탐지 기제에서의 개인차: 전공에 따른 뇌 활성화 영역)

  • Park, Min;Yoon, Hyo-Woon;Jeong, Woo-Rim;Ghim, Hei-Rhee;Lee, Seung-Bok
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.2
    • /
    • pp.139-157
    • /
    • 2007
  • We compared brain activation areas during participants drawn from contrasting two college majors performed intentionality detection (known as the basic mechanism of theory of mind) task using fMRI. The main purpose of this study was to identify whether individual differences are present in intentionality detection or not. In psychology major, the left inferior frontal gyrus, the fusiform gyrus, the superior temporal gyrus and the right fusiform gyrus, the supramarginal gyrus were activated. In engineering major, the inferior parietal lobule and the superior parietal lobule were found. This result suggests that according to participants' major, different brain areas were activated. The relations between performance of the intentionality detection task and the individual variants of participants were discussed.

  • PDF