• Title/Summary/Keyword: 상온절삭조건

Search Result 3, Processing Time 0.018 seconds

Searching and Prediction of Cutting Characteristics Using Cryogenic Tool (극저온 절삭공구에 의한 가공특성의 규명과 예측)

  • 오석영;정우섭;김칠수;이소영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.36-43
    • /
    • 1998
  • We experimented turning SCM440, called difficult-to-cut materials in general, using tungsten carbon tool(PIO) in order to elevate machinability by a new cutting method. The cutting tool designed and made to study was cooled to -17$0^{\circ}C$ in about 1 minute by liquid nitrogen. Then, we operated cryogenic cutting by cooling tool with liquid nitrogen and stuided the effect about cutting force, chip thickness, surface roughness, behavior of tool wear and cutting temperature. In addition, we investigated the possibility that sur face roughness of workpiece can be predicted analyzing cutting characteristics.

  • PDF

The Prediction of the Cutting Characteristics in Cryogenic Cutting Using Neural Network (신경회로망을 이용한 극저온 절삭특성의 예측)

  • Kim, Chill-Su;Oh, Sueg-Young;Oh, Sun-Sae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.62-70
    • /
    • 1996
  • We experimented on cutting characteristics-cutting force, behavior of cutting temperature, surface roughness. chip thickness under low temperature, which generated by liquid nitrogen(77K). The work-pieces were freezed to-195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to decrease an experimental error of machining in low temperature. The workpiece was became to -195 .deg. C in5 minutes. In cooled condition surface roughness of workpiece was better than normal condition. In addition, we investigated the possibility that surface roughness of workpiece and cutting force can be predicted analyzing cutting conditions by the trained neural network.

  • PDF

Chromaticity Improvement of PEG Waste from Wire Sawing of Silicon Ingot (실리콘 잉곳 절삭시 발생하는 폐 PEG 색도 개선에 관한 연구)

  • Cho, Yun-Kyeong;Jung, Kyeong-Youl;Sim, Min-Seok;Lee, Gi-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.310-316
    • /
    • 2012
  • The chromaticity of polyethylene glycol (PEG) generated from the recyling of a silicone slurry waste was improved by using activated carbon powder and a carbon filter. The color change of the PEG waste was investigated by changing the amount of adsorbent, adsorption time and temperature. The surface area of activated carbon did not have a significant impact on improving the color of the PEG waste. According to the results for the APHA color variation of the PEG waste changing the amount of the carbon adsorbent, the optimal usage to achieve the low APHA value was 100~150 mg-C/g-PEG. From the investigatnion on the effect of the adsorption temperature range from $25^{\circ}C$ to $100^{\circ}C$, it was found that the optimal temperatures were $40{\sim}50^{\circ}C$ in terms of achieving the lowest APHA value. The variation of the APHA color was investigated by changing the operation condition of the activated carbon filters. The use of ACF was a good way to enhance the chromaticity of the PEG waste. As a result, the APHA value of the PEG waste (APHA=53 at the initial waste) was reduced to be 10 through the ACF purification. It was also confirmed that the performance of the used carbon adsorbent can be recovered by the washing with purified water.