• Title/Summary/Keyword: 상업용 윤활제

Search Result 2, Processing Time 0.014 seconds

Temperature Effect On Warm Deep Drawability of Rectangular Cup Using Local Heating of Dies (금형의 국부적인 가열에 의한 사각통의 온간 디프로드로잉 성형성에 미치는 온도의 효과)

  • Kim, Chang-Ho;Park, Dong-Hwan;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.53-59
    • /
    • 1996
  • Warm deep drawing of single-action dies using local heating has appeared to be an alternative attractive production method of multi-operation die sets generally used at room temperature in deep drawing of rectangular cup. Uniaxial tensile tests and deep drawing tests of various materials are carried out and the effect of temperature on tensile properties and drawability are examined at temperatures up to 200 .deg. C under three kinds of lubricants of teflon film, vinyl film and drawing oil. Good formability is achieved when punch and die temperature were differentiated intentionally in order to get large tensile strength(TS) at punch shoulder protion and small TS at die side. Throughout the experiments, it has been shown that the limiting drawing height of STS316L was increased with heating die and blank holder at 100 .deg. C, but that of STS430 wasn't. When vinyl or teflon film was attached on the plates, the drawability was increased considerably.

  • PDF

Comparison the quantification method of PCBs in waste transformer oils (절연유 중 폴리염화비페닐류의 정량법 비교)

  • Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.206-215
    • /
    • 2005
  • Polychlorinated biphenyls (PCBs) were commercially produced as complex mixtures beginning in 1929. The PCBs manufactured commercially are known by a variety of trade names including; Aroclor (USA), Phenoclor (France), Kaneclor (Japan), Sovol (USSR) and so on. PCBs are a class of 209 congeners that were widely used in a wide variety of applications, including dielectric fluid in transformers and large capacitors; heat transfer fluids; hydraulic fluids; lubricating and cutting oils; and as additives in pesticides, paints, adhesives, sealants, and plastics. The quantification methods of peak matching and coefficient comparison were compared using the Aroclor 1242, 1248, 1254, 1260 standards. Also, six transformer oils were analyzed as a main source of polychlorinated biphenyls (PCBs) emission into the environment. The transformer oils contained the pure and mixed of Aroclor 1242, Aroclor 1254, and Aroclor 1260. The analytical results using two quantification methods showed the little difference between the measured results.