• Title/Summary/Keyword: 상시 오차

Search Result 92, Processing Time 0.02 seconds

Study on the Computation of World Geodetic System Result Using GPS Surveying (GPS관측에 의한 세계측지계 성과 산출에 관한 연구)

  • Choi Byoung-Gil;Kim Uk-Nam;Lee Hyung-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.59-63
    • /
    • 2006
  • 본 연구의 목적은 GPS관측에 의한 세계측지계 성과의 산출방안을 연구하는데 그 목적이 있다. GPS 관측 데이터와 상시관측소의 데이터를 활용하여 세계측지계 성과를 산출하기 위한 방안을 연구한다. GPS 관측 데이터의 후처리 결과 상시관측소의 데이터를 사용하지 않았을 경우와 사용하였을 경우의 폐합차를 분석한 결과 모두 정밀1차 기준점 측량작업규정에 만족함을 알 수 있었다. 또한 GPS상시관측소의 데이터를 활용하여 각 측점 지점의 좌표를 산출한 결과, 상시관측소 3개소의 데이터를 사용하였을 경우에 비해 사용하지 않았을 경우의 오차가 가장 크게 나타났으며 1개소 사용, 2개소 사용할 때 점차적으로 오차가 감소하고 있음을 알 수 있었다. 따라서 상시관측소를 고정점으로 사용하되 적어도 3점이상의 점을 사용하여야 함을 알 수 있었다. 본 연구는 제한된 일부 지역을 대상으로 GPS 상시관측소의 관측 데이터를 사용하여 세계측지계의 성과를 산출 한 연구로 향후 광범위한 지역에서의 GPS 상시관측소의 활용에 대한 심도 있는 연구가 진행되어야 할 것이다.

  • PDF

Comparative Analysis of Annual Tropospheric Delay by Season and Weather (계절과 날씨에 따른 연간 대류권 지연오차량 변화)

  • Lim, Soo-Hyeon;Kim, Ji-Won;Park, Jeong-Eun;Bae, Tae-Suk;Hong, Sungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this study, we estimated the tropospheric delay of GNSS (Global Navigation Satellite System) signals during passing through the atmosphere in relation to weather and seasonal factors. For this purpose, we chose four CORS (Continuously Operating Reference Station) stations from inland (CCHJ and PYCH) and on the coast (GEOM and CHJU). A total of 48 days for each station (one set of data for each week) were downloaded from the NGII (National Geographic Information Institute) and processed it using the scientific GNSS software. The average tropospheric delays in winter are less than 2,400 mm, which is about 200 mm less than those in summer. The estimated tropospheric delay shows a similar pattern from all stations except the absolute bias in magnitude, while a large delay was observed for the station located on the coast. In addition, the delay during the day was relatively stable in winter, and the average tropospheric delay was strongly related to the orthometric height. The inland stations have tropospheric delays by the precipitation rather than humidity due to dry weather and difference in temperature. On the contrary, it was primarily caused by the humidity on the sea. The correlation between temperature and water vapor pressure is 0.9 or larger for all stations, and the tropospheric delay showed a high linear relationship with temperature. It is necessary to analyze the GNSS data with higher temporal resolution (e.g. all RINEX data of the year) to improve the stability and reliability of the correlation results.

Analysis of Site Environment at Permanent GPS Stations Operated by National Geographic Information Institute (국토지리정보원 GPS 상시관측소 관측환경 분석)

  • Park, Kwan-Dong;Kim, Hye-In;Won, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.337-345
    • /
    • 2007
  • National Geographic Information Institute has installed the first permanent Global Positioning System (GPS) station SUWN in 1995 and, as of today, the number of sites is 14. In this study, we visited all the 14 stations and determined if the site mount and antenna configuration conforms to the international site guidelines published by International GNSS Service and National Geodetic Survey. The environment around each station was also checked for the possibility of causing positioning errors. In addition, the GPS data quality was evaluated using the quality-checking program called TEQC. As a result of site visits, we found that low stations (TABK, CHJU, KWNJ, and WNJU) have unfavorable environment and TEQC results validated it. TEQC results also showed that the GPS receiver change during years 2005-2006 reduced the multipath errors and the number of cycle slips at every station.

Positional Accuracy Analysis of Permanent GPS Sites Using Precise Point Positioning (정밀절대측위를 이용한 상시관측소 위치정확도 분석)

  • Kang, Joon-Mook;Lee, Yong-Wook;Kim, Min-Gyu;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.529-536
    • /
    • 2008
  • Researches about 3-D Positioning system using GPS were carried out many-sided by national organs, laboratories, the worlds of science. And most of researches were development of relative positioning algorithm and its applications. Relative positioning has a merit, which can eliminate error in received signals. But its error increase due to distance of baseline. GPS absolute positioning is a method that decides the position independently by the signals from the GPS satellites which are received by a receiver at a certain position. And it is necessary to correct various kinds of error(clock error, effect of ionosphere and troposphere, multi-path etc.). In this study, results of PPP(Precise Point Positioning) used Bernese GPS software was compared with notified coordinates by the NGII(National Geographic Information Institute) in order to analyze the positional accuracy of permanent GPS sites. And the results were compared with results of AUSPOS - Online GPS Processing Service for comparison with relative positioning.

Generation of Korean Ionospheric Total Electron Content Map Considering Differential Code Bias (Differential Code Bias를 고려한 한반도 전리층 총전자수 지도 생성)

  • Lee, Chang-Moon;Kim, Ji-Hye;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • The ionospheric delay is the largest error source in GPS positioning after the SA effect has been turned off in May, 2000. In this study, we used 44 permanent GPS stations being operated by National Geographic Information Institute (NGII) to estimate Total Electron Content (TEC) based on pseudorange measurements phase-leveled by a linear combination with carrier phases. The Differential Code Bias (DCB) of GPS satellites and receivers was estimated and applied for an accurate estimation of the TEC. To validate our estimates of DCB, changes of TEC values after DCB application were investigated. As a result, the RMS error went down by about an order of magnitude; from 35~45 to 3~4 TECU. After the DCB correction, ionospheric TEC maps were produced at a spatial resolution of $1^{\circ}{\times}1^{\circ}$. To analyze the effect of the number of sites used for map generation on the accuracy of TEC values, we tried 10, 20, 30, and 44 stations and the RMS error was computed with the Global Ionosphere Map as the truth. While the RMS error was 5.3 TECU when 10 sites are used, the error reduced to 3.9 TECU for the case of 44 stations.

Generation of Meteorological Parameters for Tropospheric Delay on GNSS Signal (GNSS 신호의 대류층 지연오차 보정을 위한 기상 정보 생성)

  • Jung, Sung-Wook;Baek, Jeong-Ho;Jo, Jung-Hyun;Lee, Jae-Won;Park, In-Kwan;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.267-282
    • /
    • 2008
  • The GNSS (Global Navigation Satellite System) signal is delayed by the neutral atmosphere at the troposphere, so that the delay is one of major error sources for GNSS precise positioning. The tropospheric delay is an integrated refractive index along the path of GNSS signal. The refractive index is empirically related to standard meteorological variables, such as pressure, temperature and water vapor partial pressure, therefore the tropospheric delay could be calculated from them. In this paper, it is presented how to generate meteorological data where observation cannot be performed. KASI(Korea Astronomy & Space Science Institute) has operated 9 GPS (Global Positioning System) permanent stations equipped with co-located MET3A, which is a meteorological sensor. Meteorological data are generated from observations of MET3A by Ordinary Kriging. To compensate a blank of observation data, simple models which consider periodic characteristics for meteorological data, are employed.

Interpolation of GPS Receiver Clock Errors Using Least-Squares Collocation (Least-Squares Collocation을 이용한 GPS 수신기 시계오차 보간)

  • Hong, Chang-Ki;Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.621-628
    • /
    • 2018
  • More than four visible GPS (Global Positioning System) satellites are required to obtain absolute positioning. However, it is not easy to satisfy this condition when a rover is in such unfavorable condition as an urban area. As a consequence, clock-aided positioning has been used as an alternative method especially when the number of visible satellites is three providing that receive clock error information is available. In this study, LSC (Least-Squares Collocation) method is proposed to interpolate clock errors for clock-aided positioning after analyzing the characteristics of receiver clock errors. Numerical tests are performed by using GPS data collected at one of Korean CORS (Continuously Operating Reference Station) and a nearby GPS station. The receiver clock errors are obtained through the DGPS (Differential GPS) positioning technique and segmentation procedures are applied for efficient interpolation. Then, LSC is applied to predicted clock error at epoch which clock information is not available. The numerical test results are analyzed by examining the differences between the original and interpolated clock errors. The mean and standard deviation of the residuals are 0.24m and 0.49m, respectively. Therefore, it can be concluded that sufficient accuracy can be obtained by using the proposed method in this study.

GIPSY 5.0을 이용한 국내 GPS 상시관측소 정밀 좌표 및 속도 산출

  • Ha, Ji-Hyeon;Won, Ji-Hye;Park, Gwan-Dong;Heo, Mun-Beom;Nam, Gi-Uk
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.35.5-36
    • /
    • 2010
  • 현재 국내에는 90여개소 이상의 GPS 상시관측소가 운영되고 있으며, 측지, 측량, 항법, 군사, 과학 연구 등 다양한 분야에 활용되고 있다. 상시관측소의 정확한 위치 정보를 결정하고 사용자에게 제공하는 것은 매우 중요한 일이다. GIPSY-OASIS II(GPS Inferred Positioning System-Orbit Analysis and Simulation Software II, 이하 GIPSY라 칭함)는 고정밀 GPS 데이터 처리 프로그램으로 2008년 6월을 기해 GIPSY 5.0버전으로 업데이트 되었다. 이에 따라 안테나 위상중심변동량(phase center variation) 절대보정(absolute calibration) 모델, GMF(global mapping function) 등 최신 오차 모델 적용이 가능해 졌다. 이 논문에서는 GIPSY 5.0을 이용하여 국내 GPS 상시관측소의 정밀 좌표와 속도를 산출하고, 기존 공시좌표와 비교하였다. 그 결과 수평, 수직방향으로 최대 1~2cm의 좌표 변화가 나타났다.

  • PDF

Determination of Practical Orthometric Height for Permanent GPS Station (GPS 상시관측점의 실용 표고좌표 결정)

  • Yun, Hong-Sic;Huang, He;Song, Dong-Seob;Hwang, Jin-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.299-307
    • /
    • 2007
  • This study is about the calculation of practical orthometric height for permanent GPS station. We presented the method to determine the orthometric height precisely by combining leveling data, GPS data and gravimetry data, and determined the orthometric heights of thirty GPS stations. To test the result we developed the expected error model fur the determined orthometric heights regarding the accuracy of Korean national benchmarks and the precision of surveying methods used at this project. The reliability of the results was presented by comparing it with expected error model statistically.

Accuracy Analysis of Cadastral Supplementary Control Points by Using Virtual Reference Station-Real Time Kinematic GPS Surveying - Focused on Geoje City - (VRS-RTK GPS측량을 이용한 지적도근점 정확도 분석 - 거제시 사례를 중심으로 -)

  • Choi, Woo-Seok;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • National Geographic Information Institute provides VRS service using permanent GPS networks. VRS-RTK(Virtual Reference System-Real Time Kinematic)GPS surveying which enable to accomplish the real time-based GPS surveying has been increasingly popular. However the positioning accuracy tends to deteriorate as the distance between the rover and base station increases in the VRS-RTK GPS surveying. To analysis this problem in this study, the accuracy of VRS-RTK data was analyzed with 2 different test sites of Geoje city, Gyeongnam province within and without the permanent GPS networks in order to accomplish the cadastral supplementary control surveying. As a result of surveying accuracy analysis at two test sites, positioning errors were ${\pm}0.03m$(RMSE) in both sites. The result was that within the tolerance specified in cadastral surveying law, and indicated the possibility of VRS-RTK GPS surveying in cadastral surveying.