• Title/Summary/Keyword: 상시 모니터링

Search Result 203, Processing Time 0.025 seconds

Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS) (다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링)

  • Kim, Sang-Wan;Kim, Donghan;Lee, Yoon-Kyung;Lee, Impyeong;Lee, Sangho;Kim, Junghoon;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.379-399
    • /
    • 2020
  • The detection of illegal ship is one of the key factors in building a marine surveillance system. Effective marine surveillance requires the means for continuous monitoring over a wide area. In this study, the possibility of ship detection monitoring based on satellite SAR, HF radar, UAV and AIS integration was investigated. Considering the characteristics of time and spatial resolution for each platform, the ship monitoring scenario consisted of a regular surveillance system using HFR data and AIS data, and an event monitoring system using satellites and UAVs. The regular surveillance system still has limitations in detecting a small ship and accuracy due to the low spatial resolution of HF radar data. However, the event monitoring system using satellite SAR data effectively detects illegal ships using AIS data, and the ship speed and heading direction estimated from SAR images or ship tracking information using HF radar data can be used as the main information for the transition to UAV monitoring. For the validation of monitoring scenario, a comprehensive field experiment was conducted from June 25 to June 26, 2019, at the west side of Hongwon Port in Seocheon. KOMPSAT-5 SAR images, UAV data, HF radar data and AIS data were successfully collected and analyzed by applying each developed algorithm. The developed system will be the basis for the regular and event ship monitoring scenarios as well as the visualization of data and analysis results collected from multiple platforms.

Experimental Implementation of Continuous GPS Data Processing Procedure on Near Real-Time Mode for High-Precision of Medium-Range Kinematic Positioning Applications (고정밀 중기선 동적측위 분야 응용을 위한 GPS 관측데이터 준실시간 연속 처리절차의 실험적 구현)

  • Lee, Hungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • This paper deals with the high precision of GPS measurement reduction and its implementation on near real-time and kinematic mode for those applications requiring centimeter-level precision of the estimated coordinates, even if target stations are a few hundred kilometers away from their references. We designed the system architecture, data streaming and processing scheme. Intensive investigation was performed to determine the characteristics of the GPS medium-range functional model, IGS infrastructure and some exemplary systems. The designed system consisted of streaming and processing units; the former automatically collects GPS data through Ntrip and IGS ultra-rapid products by FTP connection, whereas the latter handles the reduction of GPS observables on static and kinematic mode to a time series of the target stations' 3D coordinates. The data streaming unit was realized by a DOS batch file, perl script and BKG's BNC program, whereas the processing unit was implemented by definition of a process control file of BPE. To assess the functionality and precision of the positional solutions, an experiment was carried out against a network comprising seven GPS stations with baselines ranging from a few hundred up to a thousand kilometers. The results confirmed that the function of the whole system properly operated as designed, with a precision better than ${\pm}1cm$ in each of the positional component with 95% confidence level.

Multiple Damage Detection of Pipeline Structures Using Statistical Pattern Recognition of Self-sensed Guided Waves (자가 계측 유도 초음파의 통계적 패턴인식을 이용하는 배관 구조물의 복합 손상 진단 기법)

  • Park, Seung Hee;Kim, Dong Jin;Lee, Chang Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2011
  • There have been increased economic and societal demands to continuously monitor the integrity and long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. However, it is very difficult to continuously monitor the structural condition of the pipeline structures because those are placed underground and connected each other complexly, although pipeline structures are core underground infrastructures which transport primary sources. Moreover, damage can occur at several scales from micro-cracking to buckling or loose bolts in the pipeline structures. In this study, guided wave measurement can be achieved with a self-sensing circuit using a piezoelectric active sensor. In this self sensing system, a specific frequency-induced structural wavelet response is obtained from the self-sensed guided wave measurement. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented using the damage indices extracted from the guided wave features. Different types of structural damage artificially inflicted on a pipeline system were investigated to verify the effectiveness of the proposed SHM approach.

Behavioral Contextualization for Extracting Occupant's ADL Patterns in Smart-home Environment (스마트 홈 환경에서의 재실자 일상생활 활동 패턴 추출을 위한 행동 컨텍스트화 프로세스에 관한 연구)

  • Lee, Bogyeong;Lee, Hyun-Soo;Park, Moonseo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • The rapid increase of the elderly living alone is a critical issue in worldwide as it leads to a rapid increase of a social support costs (e.g., medical expenses) for the elderly. In early stages of dementia, the activities of daily living (ADL) including self-care tasks can be affected by abnormal patterns or behaviors and used as an evidence for the early diagnosis. However, extracting activities using non-intrusive approach is still quite challenging and the existing methods are not fully visualized to understand the behavior pattern or routine. To address these issues, this research suggests a model to extract the activities from coarse-grained data (spatio-temporal data log) and visualize the behavioral context information. Our approach shows the process of extracting and visualizing the subject's spaceactivity map presenting the context of each activity (time, room, duration, sequence, frequency). This research contributes to show a possibility of detecting subject's activities and behavioral patterns using coarse-grained data (limited to spatio-temporal information) with little infringement of personal privacy.

Fault Diagnosis Technology of Power Supply Insulation System in Metro Substation (도시철도 절연기기의 진단데이터 획득 기술)

  • Park, Young;Jung, Ho-Sung;Kim, Hyung-Chul;Oh, Seok-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.266-266
    • /
    • 2009
  • This paper describes important parameters used to evaluate the insulation performance of power supply components in metro substations. For online fault diagnosis of power supply components, we have developed a new remote condition monitoring system using wireless technology. Our developed system can continuously monitor electric power equipment such as transformers, circuit brakers, and rectifiers and have powerful wireless networking functions.

  • PDF

Design and Implementation of Smart Healthcare Monitoring System Using Bio-Signals (생체 신호를 이용한 스마트 헬스케어 모니터링 시스템 설계 및 구현)

  • Yoo, So-Wol;Bae, Sang-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.417-423
    • /
    • 2017
  • This paper intend to implement monitoring systems for individual customized diagnostics to maintain ongoing disease management to promote human health. Analyze the threshold of a measured biological signal using a number of measuring sensors. Performance assessment revealed that the SVM algorithm for bio-signal analysis showed an average error rate of 2 %. The accuracy of the classification is 97.2%, and reduced the maximum of 19.2% of the storage space when you split the window into 5,000 pieces. Out of the total 5,000 bio-signals, 84 results showed that results from the system were differently the results of the expert's diagnosis and showed about 98 % accuracy. However, the results of the monitoring system did not occur when the results of the monitoring system were lower than that of experts. And About 98% accuracy was shown.

Monitoring of the Crustal Movement by the Earthquake Effect using Web-based GPS Data Processing Solution (웹기반 GPS 데이터 처리 솔루션에 의한 지진영향에 따른 지각변동 모니터링)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7424-7429
    • /
    • 2014
  • GPS (Global Positioning System) is currently used widely in the ground section, such as surveying, mapping, geodesy, geophysics, the aviation section, such as aerial navigation and aerial photography, the sea section, including ship navigation and bathymetry, and space section, such as the satellite orbit and Earth's orbit. On the other hand, its use is limited due to the professional knowledge and expense to process the data for precise analysis. As a result, a web-based data processing solution for precise point positioning using GPS data was developed by c# for non-specialized people to process easily. In addition, the crustal movement speed of Korea after an earthquake was calculated to be an average of 30mm/year for each CORS, suggesting that it is possible to monitor crustal movement.

Socio-National Issues Detection Modeling based on Domain Knowledge - Focusing on the Issue of Increase in Domestic Inflow Infectious Diseases (도메인 지식 기반 이슈 탐지 모델링 - 해외 발생 감염병 국내 유입 이슈를 중심으로)

  • Hwang, Mi-Nyeong;Lee, Seungwoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.158-168
    • /
    • 2017
  • As the big data technologies advance, there is an increasing interest in systematic methodologies for data-based policy determination especially in the public health area. This study proposes a method to develop an issue detection model through the collaboration with domain experts in order to intelligently detect major socio-national issues on infectious diseases based on data. At first, the factors influencing the 'domestic inflow of foreign infectious diseases' are determined and variables representing the factors are set. Thereafter, by using system dynamics methods, the causal analysis is made to find causal map indicating main influential factors. In this process, an empirical modeling is conducted through collaboration between data analysts and experts in the infectious disease domain. The proposed issue detection approach based on domain knowledges will make it possible to make a decision on policies more efficiently if the detection system is capable of continuos monitoring of the related issues.

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 온라인 모니터링)

  • Lee, Joon-Hyun;Lee, Jin-Kyung;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • Since concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix, it relatively shows a complex failure mechanism. In order to assure the reliability of concrete structure. microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. In this study, an acoustic emission(AE) technique has been used to clarify microscopic failure mechanism and their corresponding AE signal characteristics of concrete under three-point bending test. In addition 2-dimensional AE source location has been performed to monitor the progress of an internal damage and the successive crack growth behavior during the loading. The relationship between AE signal characteristics and microscopic fracture mechanism is discussed.

  • PDF

Construction of Hydrographic Pump Dredge Process Management System Based on Beacon DGPS (비콘 DGPS기반 펌프식 해상준설 공정관리시스템의 구축)

  • Lee, Jin-Duk;Lee, Jae-Bin;Kim, Hyun-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.613-620
    • /
    • 2011
  • In order to perform scientific evaluation of dredge results, it is needed to construct the system which is able to manage and evaluate the work process by monitoring in real-time the dredge process such as dredge ship position, dredge depth and dredge volume. This research aims to develop the hydrographic dredge surveying system adding water depth measurement method to both precise positioning and navigation methods using GPS, which allows a high rate of measurement and long distances between the control point and dredging points, operate in all weather conditions, and does not require line of sight to points. We constructed Beacon DGPS-based hydrographic dredger guidance and position management system and developed the operation program which makes the dredge operation perform as monitoring work situation in real-time. It is expected that this developed system will be able to contributes to reducing ultimately the cost in hydrographic dredging or hydrographic construction industries.